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Homework 9

1. Our existence proof for Brownian motion requires a crucial inequality. As your instructor is
too lazy to prove the inequality in class, you will have to do prove it for homework. Let f be
a normally-distributed random variable with mean 0 and variance 1 defined on a probability
space X. Let µ be probability measure on X. Show that whenever a > 0,

µ{x | f(x) > a} ≤ 1√
2π

e−
a2

2

a

Hint: You can express the value of the left side precisely using an integral.

2. We aim to define the space of square-integrable functions, but the definition is a little subtle.
The purpose of this exercise is to flush out this sublety. Consider a measure space (X,F , µ) and
two functions f, g : X → R . We say that they are equivalent iff f = g except perhaps on a set
of measure zero. If we write [g] for the equivalence class of functions containing g, then

L2(X) = {[f ] |
∫
X

f2 dµ < ∞}.

When endowed with the metric ρ defined by ρ(f, g) =
√∫

X
(f − g)2, the set L2(X) becomes a

complete metric space.

(a) Verify that the relation f ∼ g iff f = g a.e. is indeed an equivalence relation. Be precise.
(b) Prove that L2(X) is well-defined.
(c) Prove that ρ is well-defined.

3. To compute the quadratic variation of Brownian motion (an upcoming attraction), we will need
a fact about normally-distributed random variables. Show that if f is a normally-distributed
random variable with expected value 0 and variance σ2, then

E(f4) = 3(σ2)2.



Appendix: Computing Expected Value of a Normally-Distributed Variable

Computing the expected value of a random variable with a particular distribution is harder than
it seems, at least at first glance. If f is the random variable under consideration, the formula is
simply

E(f) =

∫
X

f dµ.

In many situations the probability space X is not clearly defined and actually carrying this
computation out is tricky at best. We detail a less direct computation that is often easier to
carry out. Suppose that F is the probability density function of f , or in other words, that

µ({x ∈ X | f(x) ∈ (a, b)} =

∫ b

a

F (x) dx.

Let us also assume for simplicity that f is non-negative. Recall that the Lebesgue integral of f
is defined as a supremum of integrals of simple functions. In fact, by a result from class, we can
find an increasing sequence of simple functions {sn} which converges to f . Define Ii to be the
interval [ i−1

2n , i
2n ) and let Ei = f−1(Ii). The value of the simple function sn on Ei is i−1

2n . Then,
since µ({x ∈ X | f(x) ∈ (a, b)} =

∫ b

a
F (x) dx, we have

µ(Ei) =

∫
Ii

F (x) dx.

Furthermore:

∫
X

f dµ = lim
n→∞

∫
X

sn dµ = lim
n→∞

n2n∑
i=1

i− 1

2n
µ(Ei)

We can now use our formula for µ(Ei) and continue:∫
X

f dµ = lim
n→∞

n2n∑
i=1

i− 1

2n

∫
Ii

F (x) dx = lim
n→∞

n2n∑
i=1

∫
Ii

i− 1

2n
F (x) dx

Since Ii = [ i−1
2n , i

2n ),
i−1
2n ≤ x for all x ∈ Ii, hence

∫
X

f dµ ≤ lim
n→∞

n2n∑
i=1

∫
Ii

xF (x) dx ≤ lim
n→∞

n2n∑
i=1

∫
Ii

i

2n
F (x) dx =

∫
X

f dµ.

By the Sandwich Theorem, this means that∫
X

f dµ = lim
n→∞

n2n∑
i=1

∫
Ii

xF (x) dx = lim
n→∞

∫
∪Ii

xF (x) dx =

∫
R
xF (x) dx.

This argument is easily adapted to a more general situation including f that may not be non-
negative. Consequently, we have:

Theorem. Suppose f is a random variable with probability density function F . Then

E(f) =

∫
X

f dµ =

∫
R
xF (x) dx.

Note that whenever F (x) is an even function, then E(f) = 0 since then xF (x) is odd.
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