BOWDOIN COLLEGE

MATH 2603: INTRODUCTION TO ANALYSIS PROF. THOMAS PIETRAHO

Homework 3

1. A map $f: \mathbb{Q} \to \mathbb{Q}$ is called an additive homomorphism if it satisfies

$$f(a+b) = f(a) + f(b).$$

What are all the additive homomorphisms from \mathbb{Q} to \mathbb{Q} ?

2. Consider vectors \vec{v} and \vec{w} in \mathbb{R}^n . We can define a function $\rho_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by letting

$$\rho_1(\vec{v}, \vec{w}) = \sum_{i=1}^n |v_i - w_i|.$$

In \mathbb{R}^2 this is called the "taxicab metric." Prove that when endowed with this metric, \mathbb{R}^2 becomes a metric space.

3. Recall the definitions of the metrics ρ_2, ρ_1 , and ρ_∞ on the set \mathbb{R}^n from class. They are a part of a larger family of metrics called the *p*-metrics.

Definition. Let $\vec{v} = (v_1, \dots, v_n)$ and $\vec{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$. For $p \in \mathbb{N}$, we define a function

$$\rho_p(\vec{v}, \vec{w}) = \sqrt[p]{|v_1 - w_1|^p + \dots + |v_n - w_n|^p}.$$

It turns out that this is always a metric. I urge you to stay away from the proof of the triangle inequality. Armed with this knowledge, try do visualize how these metrics are interrelated by the following exercise. Let $\vec{0}$ be the origin in \mathbb{R}^n . Draw the unit sphere $S_1(\vec{0})$ in the metric spaces (\mathbb{R}^2, ρ_2) , (\mathbb{R}^2, ρ_1) , $(\mathbb{R}^2, \rho_\infty)$, (\mathbb{R}^3, ρ_1) , and (\mathbb{R}^2, ρ_3) .

4. Recall the field $\mathbb{Q}[\sqrt{2}]$ from the previous assignment. Since all of its elements are real numbers, it inherits a the usual ordering from \mathbb{R} and it is easy to verify that $\mathbb{Q}[\sqrt{2}]$ is also an ordered field. Find another way of ordering the elements of $\mathbb{Q}[\sqrt{2}]$, with the new order denoted by \prec , so that $(\mathbb{Q}[\sqrt{2}], \prec)$ is still an ordered field.