BOWDOIN COLLEGE

MATH 2603: INTRODUCTION TO ANALYSIS PROF. THOMAS PIETRAHO

Homework 2

1. Define the set of real numbers

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$$

Together with the usual addition and multiplication, $(\mathbb{Q}[\sqrt{2}], +, \cdot)$ forms a field. One could verify this fact directly by checking all the axioms of a field hold, but it turns out that is not necessary to work quite that hard. The key observation is that the set of real numbers $(\mathbb{R}, +, \cdot)$ is itself a field and every element of $\mathbb{Q}[\sqrt{2}]$ is a real number.

Question: Identify which field axioms must be explicitly checked to verify that $\mathbb{Q}[\sqrt{2}]$ is indeed a field, and which axioms already hold by viewing $\mathbb{Q}[\sqrt{2}]$ as a subset of \mathbb{R} . It is not necessary to carry out the proofs.

- 2. Suppose that $(F, +, \cdot)$ is a field and x, y, and z are elements of F. Show that
 - (a) If $x \neq 0$ and xy = xz, then y = z.
 - (b) If $x \neq 0$ and xy = x, then y = 1.
- 3. Suppose that $(F, +, \cdot)$ is an ordered field with $x, y \in F$. Show that
 - (a) If x < y then -y < -x.
 - (b) 1 > 0.
- 4. Can the set of complex numbers $\mathbb C$ form and ordered field?

Hint: Consider the relationship between i and 0.

- 5. Consider a set $S \subset \mathbb{R}$ and suppose that it has a lower bound. Define the set -S as $\{-r \mid r \in S\}$.
 - (a) Define precisely the notion of a greatest lower bound for a set S and explain why one exists if S has a lower bound. The greatest lower bound for a set S is often written as $\inf S$, the infimum of S.
 - (b) Show that inf $S = -\sup(-S)$.