BOWDOIN COLLEGE

MATH 2603: INTRODUCTION TO ANALYSIS PROF. THOMAS PIETRAHO

Homework 12

- 1. The goal of this sequence of exercises is to derive the power rule for differentiation. It begins with a formal definition of the natural logarithm.
 - (a) Define a differentiable function $L: \mathbb{R}_{>0} \to \mathbb{R}$ by requiring that
 - i. $L'(x) = \frac{1}{x}$, and
 - ii. L(1) = 0.

Prove that these conditions define L uniquely. That is, if M is another function satisfying both of the above, then L(x) = M(x) for all $x \in \mathbb{R}_{>0}$. We will write $\ln(x)$ instead of L(x).

(b) Show that $\ln x$ is a bijection from $\mathbb{R}_{>0}$ to \mathbb{R} .

Hint: To show that it is surjective, first show that it has neither an upper nor a lower bound and then use the intermediate value theorem. One way to show that $\ln x$ fails to have an upper bound is to first show that $\ln n \ge \sum_{k=2}^{n} \frac{1}{k}$ for all n.

- (c) Since $\ln x$ is a bijection, it has an inverse function, which we define to be e^x . Using the chain rule, prove that $(e^x)' = e^x$.
- (d) For a positive real number x and any real α , we can now define x^{α} as

$$x^{\alpha} = e^{\alpha \ln x}$$
.

Armed with this definition, show that

$$(x^{\alpha})' = \alpha x^{\alpha - 1}.$$