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A Strange Theorem

A couple of times in my life, | have encountered the following strange statement:

Theorem
Two N x N matrices can be multiplied using only N?-8074--- scalar multiplications.

Intimidated by irrational numbers, | always promptly averted my gaze. What could

this statement possibly mean?

Let's look at 2 x 2 matrices:

[ all an } |:b11 b12:| _ {211b11+312b21 a1 bio + a12b2

a1 ax b1 b ap1bi1 + axnbp1  axnbiz + axnbx

To compute this, 8 = 23 scalar products must be found (and a few scalar sums).

Thinking about this, we get

Theorem
Two N x N matrices can be multiplied using N3 scalar multiplications.
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Note: N2-8074-- represents a huge savings over N3.

For computers If N =~ 107, then
1. addition is fast 1. N2:8074... 5 1019.65...
2. multiplication is slow 2. N3 ~ 102

For multiplication of 107 x 107 matrices, the “strange”
theorem cuts the number of scalar multiplications
by a factor of about 1035 ~ 22.
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Strassen’s observation: 2k x 2k block matrices

Aol ‘ Axn

Au | A ]

Bu | B _ | Cu | G
B>y ‘ B Cn ‘ C

Form the products:

My =(A11 + Ax)(Bi1 + B22)
Mo =(Az1 + A2)Bi1
M3 =A11(B12 — B2)
My =Ax(B21 — Bi1)
Ms =(A11 + A12) B2z
Me =(A21 — A11)(B11 + Bi2)
M7 =(A12 — Ax)(B21 + B22)



Strassen’s observation: 2k x 2k block matrices

Au | A Bu | B _ | Cu | G
Ag | Az Bx | Bz Ca | G2
Form the products: then combine them:

My =(A11 + Ax)(Bi1 + B22)
Mo =(Az1 + A2)Bi1
M3 =A11(B12 — B2)
My =Ax(B21 — Bi1)
Ms =(A11 + A12) B2z
Me =(A21 — A11)(B11 + Bi2)
M7 =(A12 — Ax)(B21 + B22)

Ci1 =My + My — Ms + M7
Cio =M3 + Ms
Cor =M + My
Coo =My — Mz + M3 + Mg
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This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.
2. If n =2k, then n x n matrices can be multiplied using 7% scalar multiplications.

3. If n =2k, then n x n matrices can be multiplied using 2k'°827 scalar
multiplications.

With a little slight-of-hand, we write N = 2% concluding:

Theorem (Strassen)

7 ~ |2-8074...

N x N matrices can be multiplied using N'°&2 scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss
this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 X 2 matrices using only 6 scalar
multiplications? Or can one reduce the exponent 2.8074 ... some
other way?
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Theorem (Hopcroft and Kerr, 1971)
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Other efforts and theoretical bounds

Definition

Let MultRank(N) be the minimum number of scalar multiplications necessary to
multiply two N x N matrices. Let MultExp(/N) be the corresponding exponent.

Similar advances: Lower bounds:
Theorem (Laderman, 1976) Theorem (Winograd, 1971)
MultRank(3) < 23. 7 < MultRank(2)
Theorem (Waksman, 1970) Theorem (Bléser, 2003)
MultRank(2, 2,3) < 11. 19 < MultRank(3) < 23
10 < MultRank(2,2,3) < 11
Theorem (Hopcroft and Kerr, 1971) 14 < MultRank(2,3,3) < 15
MultRank(2, 3, 3) < 15. 33 < MultRank(4) < 49
There is potential for significant
Theorem (Strassen, 1969) ere is potential for significan

improvement in existing algorithms

MultRank(4) < 49. when N > 3.



Question: This is going to be a huge mess. How could one possibly
improve any of these results without reams of computations?

Obligatory “math on glass” image from The Accountant



Neural networks: a brief introduction



Neural Nets

A neural net NV is an object:

Output € R™

magic!

Input € R”

It is a fancy way to produce a function:

Fn iR — R™.
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Neural nets are made of “neurons”

Where o is a function:

a(>° wixi + b;) o2

0.4 0.2 0.2 0.4




Neurons in layers make a neural network

Output Layer € R™
Hidden Layer € R¥

Input Layer € R”

Each edge may have a different w called its “weight”. Each neuron may have a
different b called its “bias.”



Neurons in many layers make a “deep” neural net

Output Layer € R™

Hidden Layer € RP
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Input Layer € R”



The problem in deep learning:

Given, a perhaps not fully understood function F, find a neural net-
work N that recovers F. That is:

Fn = F.
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The problem in deep learning;:
Given, a perhaps not fully understood function F, find a neural net-
work N that recovers F. That is:

Fn = F.

@ This neural net is 85% accurate:

Here each handwritten digit is given
by a 28 x 28 array of greyscale pixels.
We'd like to understand

F:R™® SR

or better still:

F - R784 N RIO

Image by A. Nielsen



ImageNet Challenge: Given 256 x 256 RGB images classified into
1000 classes. Find a neural network N that describes the classifica-
tion function:

F - R3:256° _, 1000




ImageNet Challenge: Given 256 x 256 RGB images classified into
1000 classes. Find a neural network N that describes the classifica-

tion function:
2
F - R3-256 R1000

Google's Inception neural net A/ achieves 95% top-5 accuracy. The big picture of
the neural net:

Image by Google



[ Fun Problem: Predict species of bird based on photographic image. ]

cardinal wood duck anhinga chickadee

Accuracy 87%. (P., 2017)



Fun Problem:

“The Oxford llustrated History
SFIRST
WORLD

s WAR

history

science

Predict book genre based on its cover.

Starting
Stren,

Basic Barbell Training
$ed Eliion

Mark Rippetoc_
A

romance sports

Accuracy 76%. (with Parikshit Sharma, '17, IndieBio)
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The Whole Process

Goal:  Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far(x;)]
5. Continue tweaking w and bias b until error is
as small as possible
6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.



A machine learning approach to fast
matrix multiplication
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Back to matrix multiplication

Goal: Design a neural network that mimics 2 X 2 matrix multiplication:
F:R* 5 R*
F(A,B)=A-B

Step 1: Start with a set of data points:

(%1, F(x1))

This is easy. Generate lots of random 2 X 2 matrices x; = (A;, B;) as well as
their products F(x;) = A; - B;.
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Back to matrix multiplication

Goal: Design a neural network that mimics 2 X 2 matrix multiplication:
F:R* 5 R*
F(A,B)=A-B

Step 2: Build a neural network N

Need: A new type of neuron. One whose output is the product of its two inputs.

A new type of neural net!



Neural Net for matrix multiplication

a21b12 + axbxn

aiibi1 + awobn ai b2 + a121722| axibi1 + a221721|
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Neural Net for matrix multiplication

aiibi + a121b1| ai b2 + a121722| ax1 b1 + a221721| a2 b2 + a221722|
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Step 3: Compare with output of N':
(i, P (xi))
Step 4: Tweak weights w and bias b for each edge so that
Error = ave|F(x;) — Far(x;)|

decreases.

Step 5: Continue tweaking w and bias b until error is as small as
possible



Step 3: Compare with output of N':
(i, P (xi))
Step 4: Tweak weights w and bias b for each edge so that
Error = ave|F(x;) — Far(x;)|

decreases.

Step 5: Continue tweaking w and bias b until error is as small as
possible

The Result:
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Figure 5: N = 4 Rank = 47
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ure this out?
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Figure 5: N = 4 Rank = 46

Question: Can a computer fig-
ure this out?




| was about to call an end to all of Yes! Also:
this, but then a recent preprint
mentioned a forgotten result:

Theorem (Stothers, 2011)
MultRank(4) < 48.
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It is the first result that has beat
Strassen’s exponent! Here
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MultExp(4) < log, 48 ~ 2.7924 . ..
Figure 5: N = 4 Rank = 45

Question: Can a computer fig-
ure this out?




| was about to call an end to all of
this, but then a recent preprint
mentioned a forgotten result:

Theorem (Stothers, 2011)
MultRank(4) < 48.

It is the first result that has beat
Strassen’s exponent! Here

MultExp(4) < log, 48 ~ 2.7924 . ..

Question: Can a computer fig-
ure this out?

OK, too much:

0.010 \—

0.001

1 10 100 1000

Figure 5: N = 4 Rank = 33
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Conjecture: One can multiply 4 X 4 matrices with fewer than 48
scalar multiplications. In fact, is seems that

MultRank(4) < 45.

Asymptotically, this would give MultExp(4) < log, 45 = 2.7459. . ..
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Note this is only a conjecture. My neural networks were only approximations. What
remains:
1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights
equal £1.
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It looks like:

e )

Conjecture: One can multiply 4 X 4 matrices with fewer than 48
scalar multiplications. In fact, is seems that

MultRank(4) < 45.

Asymptotically, this would give MultExp(4) < log, 45 = 2.7459. . ..

Note this is only a conjecture. My neural networks were only approximations. What
remains:
1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights
equal £1.

Conjecture:
lim MultExp(N) = 2
N— o0

Currently, it is known limy_, o MultExp(N) < 2.3728... (Josh Alman and Virginia
Williams, 2021).



Update

© DeepMind
Discovering_ novel algorithms with AlphaTensor

This sheds light on a 50-year-old open question in mathematics about finding the
fastest way to multiply two matrices.

\
\

AV

3 weeks ago

NS New Scientist
DeepMind Al finds new way to multiply numbers and speed
up ...

Matrix multiplication — where two grids of numbers are multiplied together ... But
DeepMind's Al has now discovered a faster technique that...

3 weeks ago

° Ars Technica

DeepMind breaks 50-year math record using Al; new record
falls a week later

Last week, DeepMind announced it discovered a more efficient way to perform matrix
multiplication, conquering a 50-year-old record.

2 weeks ago




Nature announced in October, 2022 that:

Theorem (FBHHRBNRSSSHK)
MultRank(4) < 47* and MultRank(5) < 96*



Nature announced in October, 2022 that:

Theorem (FBHHRBNRSSSHK)
MultRank(4) < 47* and MultRank(5) < 96*

It made me feel better that to discover this results, this team used 64 state-of-the-art
TPU cores, trained for 600,000 iterations: a non-academic battery of computational
resources that cost somewhere between $10,000 and $100,000 to run.

* for 0,1-matrices.



Update

Figure 6: RL for AlphaTensor
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A few days later...

THE FBHHRBNRSSSHK-ALGORITHM FOR MULTIPLICATION IN Z3*® IS STILL
NOT THE END OF THE STORY

MANUEL KAUERS* AND JAKOB MOOSBAUER

ABSTRACT. In response to a recent Nature article which announced an algorithm for multiplying 5 x 5-
matrices over Zs with only 96 multiplications, two fewer than the previous record, we present an algo-
rithm that does the job with only 95 multiplications.

1. INTRODUCTION

Ever since Strassen [8] discovered that 2 x 2-matrices can be multiplied with only 7 multiplications in
the coefficient domain, there is a mystery around the complexity of matrix multiplication. For asymptot-
ically large n, the best we know at the moment is a multiplication algorithm that requires O(n>3728596)
operations [1], slightly improving upon the previous record O(n?3728639) [5]. For n = 3, it is known
that 23 multiplications suffice in a non-commutative setting [4]. For n = 4, we can solve the problem
with 49 multiplications by applying Strassen’s algorithm recursively. In a recent article that recei
considerable media attention, Fawzi et al. [2] used a machine learning approach to find a multiplication
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