Fast matrix multiplication: a brief adventure in neural networks and computational algebra

Thomas Pietraho Fall, 2022

A Strange Theorem

A couple of times in my life, I have encountered the following strange statement:

Theorem

Two N \times N matrices can be multiplied using only N^{2.8074...} scalar multiplications.

A Strange Theorem

A couple of times in my life, I have encountered the following strange statement:

Theorem

Two N \times N matrices can be multiplied using only N^{2.8074...} scalar multiplications.

Intimidated by irrational numbers, I always promptly averted my gaze. What could this statement possibly mean?

A Strange Theorem

A couple of times in my life, I have encountered the following strange statement:

Theorem

Two N \times N matrices can be multiplied using only N^{2.8074...} scalar multiplications.

Intimidated by irrational numbers, I always promptly averted my gaze. What could this statement possibly mean?

Let's look at 2×2 matrices:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{22}b_{12} + a_{22}b_{22} \end{bmatrix}$$

To compute this, $8=2^3$ scalar products must be found (and a few scalar sums). Thinking about this, we get

Theorem

Two N \times N matrices can be multiplied using N³ scalar multiplications.

For computers

- 1. addition is fast
- 2. multiplication is slow

For computers

1. addition is fast

2. multiplication is slow

If $N \approx 10^7$, then

1. $N^{2.8074...} \approx 10^{19.65...}$ 2. $N^3 \approx 10^{21}$

For computers

- 1. addition is fast
- 2. multiplication is slow

If $N \approx 10^7$, then

- 1. $N^{2.8074...} \approx 10^{19.65...}$
- $2. N^3 \approx 10^{21}$

For multiplication of $10^7 \times 10^7$ matrices, the "strange" theorem cuts the number of scalar multiplications by a factor of about $10^{1.35} \approx 22$.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

First form products:

$$m_1 = a_{11}b_{11}$$

 $m_2 = a_{12}b_{21}$
 $m_3 = a_{11}b_{12}$
 $m_4 = a_{12}b_{22}$
 $m_5 = a_{21}b_{11}$

$$m_6 = a_{22}b_{21}$$

$$m_7 = a_{22}b_{12}$$

$$m_8 = a_{22}b_{22}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

First form products:

$$m_1 = a_{11} b_{11}$$
 $m_2 = a_{12} b_{21}$
 $m_3 = a_{11} b_{12}$
 $m_4 = a_{12} b_{22}$
 $m_5 = a_{21} b_{11}$
 $m_6 = a_{22} b_{21}$
 $m_7 = a_{22} b_{12}$
 $m_8 = a_{22} b_{22}$

$$c_{11} = m_1 + m_2$$

$$c_{12} = m_3 + m_4$$

$$c_{21} = m_5 + m_6$$

$$c_{22} = m_7 + m_8$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

Strassen formed:

$$m_{1} = (a_{11} + a_{22})(b_{11} + b_{22})$$

$$m_{2} = (a_{21} + a_{22})b_{11}$$

$$m_{3} = a_{11}(b_{12} - b_{22})$$

$$m_{4} = a_{22}(b_{21} - b_{11})$$

$$m_{5} = (a_{11} + a_{12})b_{22}$$

$$m_{6} = (a_{21} - a_{11})(b_{11} + b_{12})$$

$$m_{7} = (a_{12} - a_{22})(b_{21} + b_{22})$$

$$c_{11} = m_{1} + m_{4} - m_{5} + m_{7}$$

$$c_{12} = m_{3} + m_{5}$$

$$c_{21} = m_{2} + m_{4}$$

$$c_{22} = m_{1} - m_{2} + m_{3} + m_{6}$$

$$c_{11} = m_1 + m_4 - m_5 + m_7$$

 $c_{12} = m_3 + m_5$
 $c_{21} = m_2 + m_4$

Theorem

 2×2 matrices can be multiplied using 7 only scalar multiplications!

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

Strassen formed:

$$m_{1} = (a_{11} + a_{22})(b_{11} + b_{22})$$

$$m_{2} = (a_{21} + a_{22})b_{11}$$

$$m_{3} = a_{11}(b_{12} - b_{22})$$

$$m_{4} = a_{22}(b_{21} - b_{11})$$

$$m_{5} = (a_{11} + a_{12})b_{22}$$

$$m_{6} = (a_{21} - a_{11})(b_{11} + b_{12})$$

$$m_{7} = (a_{12} - a_{22})(b_{21} + b_{22})$$

$$c_{11} = m_{1} + m_{4} - m_{5} + m_{7}$$

$$c_{12} = m_{3} + m_{5}$$

$$c_{21} = m_{2} + m_{4}$$

$$c_{22} = m_{1} - m_{2} + m_{3} + m_{6}$$

$$c_{11} = m_1 + m_4 - m_5 + m_7$$

$$c_{12} = m_3 + m_5$$

$$c_{21} = m_2 + m_4$$

Theorem

 2×2 matrices can be multiplied using 7 only scalar multiplications!

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

Strassen formed:

$$m_{1} = (a_{11} + a_{22})(b_{11} + b_{22})$$

$$m_{2} = (a_{21} + a_{22})b_{11}$$

$$m_{3} = a_{11}(b_{12} - b_{22})$$

$$m_{4} = a_{22}(b_{21} - b_{11})$$

$$m_{5} = (a_{11} + a_{12})b_{22}$$

$$m_{6} = (a_{21} - a_{11})(b_{11} + b_{12})$$

$$m_{7} = (a_{12} - a_{22})(b_{21} + b_{22})$$

$$c_{11} = m_{1} + m_{4} - m_{5} + m_{7}$$

$$c_{12} = m_{3} + m_{5}$$

$$c_{21} = m_{2} + m_{4}$$

$$c_{22} = m_{1} - m_{2} + m_{3} + m_{6}$$

Theorem

 2×2 matrices can be multiplied using 7 only scalar multiplications!

$$\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix} = \begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}$$

Form the products:

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_2 = (A_{21} + A_{22})B_{11}$$

$$M_3 = A_{11}(B_{12} - B_{22})$$

$$M_4 = A_{22}(B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12})B_{22}$$

$$M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix} = \begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}$$

Form the products:

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_2 = (A_{21} + A_{22})B_{11}$$

$$M_3 = A_{11}(B_{12} - B_{22})$$

$$M_4 = A_{22}(B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12})B_{22}$$

$$M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

then combine them:

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

- 1. 4×4 matrices can be multiplied using 49 scalar multiplications.
- 2. If $n = 2^k$, then $n \times n$ matrices can be multiplied using 7^k scalar multiplications.

- 1. 4×4 matrices can be multiplied using 49 scalar multiplications.
- 2. If $n = 2^k$, then $n \times n$ matrices can be multiplied using 7^k scalar multiplications.
- 3. If $n=2^k$, then $n\times n$ matrices can be multiplied using $2^{k\log_2 7}$ scalar multiplications.

- 1. 4×4 matrices can be multiplied using 49 scalar multiplications.
- 2. If $n = 2^k$, then $n \times n$ matrices can be multiplied using 7^k scalar multiplications.
- 3. If $n=2^k$, then $n\times n$ matrices can be multiplied using $2^{k\log_27}$ scalar multiplications.

With a little slight-of-hand, we write $N = 2^k$ concluding:

Theorem (Strassen)

N \times N matrices can be multiplied using N $^{log_27} \approx$ N $^{2.8074...}$ scalar multiplications.

- 1. 4×4 matrices can be multiplied using 49 scalar multiplications.
- 2. If $n = 2^k$, then $n \times n$ matrices can be multiplied using 7^k scalar multiplications.
- 3. If $n=2^k$, then $n\times n$ matrices can be multiplied using $2^{k\log_27}$ scalar multiplications.

With a little slight-of-hand, we write $N = 2^k$ concluding:

Theorem (Strassen)

N \times N matrices can be multiplied using N $^{log_2\,7} \approx$ N $^{2.8074...}$ scalar multiplications.

Note: This is only technically true for $N = 2^k$ for some k, but most people just gloss this over and say the theorem is true "asymptotically."

- 1. 4×4 matrices can be multiplied using 49 scalar multiplications.
- 2. If $n = 2^k$, then $n \times n$ matrices can be multiplied using 7^k scalar multiplications.
- 3. If $n=2^k$, then $n\times n$ matrices can be multiplied using $2^{k\log_27}$ scalar multiplications.

With a little slight-of-hand, we write $N = 2^k$ concluding:

Theorem (Strassen)

 $N \times N$ matrices can be multiplied using $N^{\log_2 7} \approx N^{2.8074...}$ scalar multiplications.

Note: This is only technically true for $N = 2^k$ for some k, but most people just gloss this over and say the theorem is true "asymptotically."

Question: Can one do better?

- 1. 4×4 matrices can be multiplied using 49 scalar multiplications.
- 2. If $n = 2^k$, then $n \times n$ matrices can be multiplied using 7^k scalar multiplications.
- 3. If $n=2^k$, then $n\times n$ matrices can be multiplied using $2^{k\log_27}$ scalar multiplications.

With a little slight-of-hand, we write $N = 2^k$ concluding:

Theorem (Strassen)

N \times N matrices can be multiplied using N $^{log_2\,7} \approx$ N $^{2.8074...}$ scalar multiplications.

Note: This is only technically true for $N = 2^k$ for some k, but most people just gloss this over and say the theorem is true "asymptotically."

Question: Can one do better? 2×2 matrices using only 6 scalar multiplications?

- 1. 4×4 matrices can be multiplied using 49 scalar multiplications.
- 2. If $n = 2^k$, then $n \times n$ matrices can be multiplied using 7^k scalar multiplications.
- 3. If $n=2^k$, then $n\times n$ matrices can be multiplied using $2^{k\log_27}$ scalar multiplications.

With a little slight-of-hand, we write $N = 2^k$ concluding:

Theorem (Strassen)

N \times N matrices can be multiplied using N^{log₂ 7} \approx N^{2.8074...} scalar multiplications.

Note: This is only technically true for $N=2^k$ for some k, but most people just gloss this over and say the theorem is true "asymptotically."

Question: Can one do better? 2×2 matrices using only 6 scalar multiplications? Or can one reduce the exponent 2.8074... some other way?

Other efforts and theoretical bounds

Definition

Let MultRank(N) be the minimum number of scalar multiplications necessary to multiply two $N \times N$ matrices. Let MultExp(N) be the corresponding exponent.

Other efforts and theoretical bounds

Definition

Let $\mathbf{MultRank}(N)$ be the minimum number of scalar multiplications necessary to multiply two $N \times N$ matrices. Let $\mathbf{MultExp}(N)$ be the corresponding exponent.

Similar advances:

Theorem (Laderman, 1976)

 $\textbf{MultRank}(3) \leq 23.$

Theorem (Waksman, 1970)

MultRank(2, 2, 3) < 11.

Theorem (Hopcroft and Kerr, 1971)

 $\textbf{MultRank}(2,3,3) \leq 15.$

Theorem (Strassen, 1969)

 $MultRank(4) \le 49$.

Other efforts and theoretical bounds

Definition

Let MultRank(N) be the minimum number of scalar multiplications necessary to multiply two $N \times N$ matrices. Let MultExp(N) be the corresponding exponent.

Similar advances:

Theorem (Laderman, 1976)

 $MultRank(3) \le 23$.

Theorem (Waksman, 1970)

MultRank $(2, 2, 3) \le 11$.

Theorem (Hopcroft and Kerr, 1971)

 $\textbf{MultRank}(2,3,3) \leq 15.$

Theorem (Strassen, 1969)

 $MultRank(4) \le 49$.

Lower bounds:

Theorem (Winograd, 1971)

 $7 \leq MultRank(2)$

Theorem (Bläser, 2003)

19 < MultRank(3) < 23

 $10 \leq MultRank(2,2,3) \leq 11$

 $14 \leq \textbf{MultRank}(2,3,3) \leq 15$

 $33 \leq \textbf{MultRank}(4) \leq 49$

There is potential for significant improvement in existing algorithms when $N \ge 3$.

Question: This is going to be a huge mess. How could one possibly improve any of these results without reams of computations?

Neural networks: a brief introduction

Neural Nets

A neural net ${\mathcal N}$ is an object:

It is a fancy way to produce a function:

$$F_{\mathcal{N}}: \mathbb{R}^n \to \mathbb{R}^m$$
.

Neural nets are made of "neurons"

Neural nets are made of "neurons"

Neural nets are made of "neurons"

Neurons in layers make a neural network

Each edge may have a different w called its "weight". Each neuron may have a different b called its "bias."

Neurons in many layers make a "deep" neural net

The problem in deep learning:

Given, a perhaps not fully understood function F, find a neural network ${\mathcal N}$ that recovers F. That is:

 $F_{\mathcal{N}} \approx F$.

The problem in deep learning:

Given, a perhaps not fully understood function F, find a neural network ${\mathcal N}$ that recovers F. That is:

$$F_{\mathcal{N}} \approx F$$
.

Image by R. Fithen

The problem in deep learning:

Given, a perhaps not fully understood function F, find a neural network $\mathcal N$ that recovers F. That is:

 $F_{\mathcal{N}} \approx F$.

Here each handwritten digit is given by a 28×28 array of greyscale pixels. We'd like to understand

$$F: \mathbb{R}^{784} \to \mathbb{R}$$

or better still:

$$F: \mathbb{R}^{784} \to \mathbb{R}^{10}$$

This neural net is 85% accurate:

Image by A. Nielsen

ImageNet Challenge: Given 256×256 RGB images classified into 1000 classes. Find a neural network N that describes the classification function:

 $F:\mathbb{R}^{3\cdot 256^2}\to\mathbb{R}^{1000}.$

ImageNet Challenge: Given 256 \times 256 RGB images classified into 1000 classes. Find a neural network ${\cal N}$ that describes the classification function:

$$F: \mathbb{R}^{3\cdot 256^2} \to \mathbb{R}^{1000}.$$

Google's Inception neural net ${\cal N}$ achieves 95% top-5 accuracy. The big picture of the neural net:

Image by Google

Fun Problem: Predict species of bird based on photographic image.

cardinal

anhinga

chickadee

Accuracy 87%. (P., 2017)

Fun Problem: Predict book genre based on its cover.

history

science

romance

sports

Accuracy 76%. (with Parikshit Sharma, '17, IndieBio)

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

2. Build a neural network ${\mathcal N}$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

2. Build a neural network ${\cal N}$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

$$\mathsf{Error} = \mathsf{ave}|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

4. Tweak weights w and bias b decreasing

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

4. Tweak weights w and bias b decreasing

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

4. Tweak weights w and bias b decreasing

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

4. Tweak weights w and bias b decreasing

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

4. Tweak weights w and bias b decreasing

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

4. Tweak weights w and bias b decreasing

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

- Continue tweaking w and bias b until error is as small as possible
- 6. Sell your trained neural net to a startup.

Goal: Understand a, perhaps poorly defined, function F.

1. Start with a set of data points:

$$(x_i, F(x_i))$$

- 2. Build a neural network ${\mathcal N}$
- 3. Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

$$Error = ave|F(x_i) - F_{\mathcal{N}}(x_i)|$$

- Continue tweaking w and bias b until error is as small as possible
- 6. Sell your trained neural net to a startup.
- 7. Buy fancy coffee maker for Math Dept.

A machine learning approach to fast

matrix multiplication

Goal: Design a neural network that mimics 2×2 matrix multiplication:

$$F: \mathbb{R}^{2\cdot 4} \to \mathbb{R}^4$$

$$F(A,B) = A \cdot B$$

 $\textbf{Goal:} \ \ \text{Design a neural network that mimics 2} \times 2 \ \text{matrix multiplication:}$

$$F: \mathbb{R}^{2\cdot 4} \to \mathbb{R}^4$$

$$F(A,B) = A \cdot B$$

Step 1: Start with a set of data points:

$$(x_i, F(x_i))$$

This is easy. Generate lots of random 2×2 matrices $x_i = (A_i, B_i)$ as well as their products $F(x_i) = A_i \cdot B_i$.

 $\textbf{Goal:}\ \, \text{Design a neural network that mimics 2} \times 2 \ \text{matrix multiplication:}$

$$F: \mathbb{R}^{2\cdot 4} \to \mathbb{R}^4$$

$$F(A,B)=A\cdot B$$

Step 2: Build a neural network ${\mathcal N}$

Goal: Design a neural network that mimics 2×2 matrix multiplication:

$$F: \mathbb{R}^{2\cdot 4} o \mathbb{R}^4$$

$$F(A,B) = A \cdot B$$

Step 2: Build a neural network $\mathcal N$

Need: A new type of neuron. One whose output is the product of its two inputs.

A new type of neural net!

Neural Net for matrix multiplication

Neural Net for matrix multiplication

Step 3: Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

Step 4: Tweak weights w and bias b for each edge so that

$$\mathsf{Error} = \mathsf{ave}|F(x_i) - F_{\mathcal{N}}(x_i)|$$

decreases.

Step 3: Compare with output of \mathcal{N} :

$$(x_i, F_{\mathcal{N}}(x_i))$$

Step 4: Tweak weights w and bias b for each edge so that

$$\mathsf{Error} = \mathsf{ave}|F(x_i) - F_{\mathcal{N}}(x_i)|$$

decreases.

Step 5: Continue tweaking w and bias b until error is as small as possible

The Result:

Machine-trained neural net for matrix multiplication

Neural Net for Strassen's matrix multiplication

Neural Net for Strassen's matrix multiplication

Machine-trained neural net for Strassen's matrix multiplication

In one day, our new fancied-up neural nets replicated:

Theorem (Strassen, 1969)

 $MultRank(2) \le 7$

In one day, our new fancied-up neural nets replicated:

Theorem (Strassen, 1969)

 $\mathsf{MultRank}(2) \leq 7$

Theorem (Laderman, 1976)

 $\textbf{MultRank}(3) \leq 23$

Theorem (Strassen, 1969) MultRank $(2) \le 7$

` '

Theorem (Laderman, 1976) MultRank $(3) \le 23$

TI ()A/ I 1070

Theorem (Waksman, 1970) MultRank $(2,2,3) \le 11$

Theorem (Strassen, 1969) MultRank(2) < 7

Theorem (Laderman, 1976) $MultRank(3) \le 23$

Theorem (Waksman, 1970)

MultRank $(2, 2, 3) \le 11$

Theorem (Hopcroft and Kerr, 1971) **MultRank** $(2, 3, 3) \le 15$

How can you tell this actually works?

Theorem (Strassen, 1969) MultRank(2) < 7

Theorem (Laderman, 1976)

MultRank(3) \leq 23

Theorem (Waksman, 1970) $\text{MultRank}(2,2,3) \leq 11$

Theorem (Hopcroft and Kerr, 1971) $\label{eq:multRank} \text{MultRank}(2,3,3) \leq 15$

How can you tell this actually works?

Theorem (Strassen, 1969) MultRank(2) < 7

Theorem (Laderman, 1976)

MultRank(3) \leq 23

Theorem (Waksman, 1970) MultRank $(2,2,3) \le 11$

Theorem (Hopcroft and Kerr, 1971) $\text{MultRank}(2,3,3) \leq 15$

Plot error vs. training time.

Theorem (Strassen, 1969) MultRank(2) < 7

Theorem (Laderman, 1976)

 $MultRank(3) \le 23$

Theorem (Waksman, 1970)

 $\mathsf{MultRank}(2,2,3) \leq 11$

Theorem (Hopcroft and Kerr, 1971) MultRank $(2,3,3) \le 15$

How can you tell this actually works?

Plot error vs. training time.

Figure 3: N = 2 Rank = 7

Theorem (Strassen, 1969) MultRank(2) < 7

Theorem (Laderman, 1976)

 $MultRank(3) \le 23$

Theorem (Waksman, 1970)

 $\textbf{MultRank}(2,2,3) \leq 11$

Theorem (Hopcroft and Kerr, 1971) MultRank $(2,3,3) \le 15$ How can you tell this actually works?

Plot error vs. training time.

Figure 3: N = 3 Rank = 23

Figure 4: N = 2 Rank = 6

Figure 4: N = 3 Rank = 22

Figure 4: N=3 Rank =21

Figure 4: N=2,2,3 Rank =10

Theorem (Stothers, 2011) $\text{MultRank}(4) \leq 48.$

Theorem (Stothers, 2011) $\text{MultRank}(4) \leq 48.$

It is the first result that has beat Strassen's exponent! Here

MultExp(4)
$$\leq \log_4 48 \approx 2.7924...$$

Theorem (Stothers, 2011) $\text{MultRank}(4) \leq 48.$

It is the first result that has beat Strassen's exponent! Here

$$MultExp(4) \le \log_4 48 \approx 2.7924...$$

Question: Can a computer figure this out?

Theorem (Stothers, 2011) $MultRank(4) \leq 48.$

It is the first result that has beat Strassen's exponent! Here

$$MultExp(4) \leq log_4 48 \approx 2.7924...$$

Question: Can a computer figure this out?

Yes!

Figure 5: N = 4 Rank = 48

Theorem (Stothers, 2011) $\text{MultRank}(4) \leq 48.$

It is the first result that has beat Strassen's exponent! Here

$$\textbf{MultExp}(4) \leq \log_4 48 \approx 2.7924\dots$$

Question: Can a computer figure this out?

Yes! Also:

Figure 5: N = 4 Rank = 47

Theorem (Stothers, 2011) $\text{MultRank}(4) \leq 48.$

It is the first result that has beat Strassen's exponent! Here

$$\textbf{MultExp}(4) \leq \log_4 48 \approx 2.7924\dots$$

Question: Can a computer figure this out?

Yes! Also:

Figure 5: N = 4 Rank = 46

Theorem (Stothers, 2011) $\text{MultRank}(4) \leq 48.$

It is the first result that has beat Strassen's exponent! Here

$$\textbf{MultExp}(4) \leq \log_4 48 \approx 2.7924\dots$$

Question: Can a computer figure this out?

Yes! Also:

Figure 5: N = 4 Rank = 45

Theorem (Stothers, 2011) MultRank(4) < 48.

It is the first result that has beat Strassen's exponent! Here

$$\textbf{MultExp}(4) \leq \log_4 48 \approx 2.7924\dots$$

Question: Can a computer figure this out?

OK, too much:

Figure 5: N = 4 Rank = 33

Conjecture: One can multiply 4×4 matrices with fewer than 48 scalar multiplications. In fact, is seems that

 $MultRank(4) \le 45$.

Asymptotically, this would give $MultExp(4) \le log_4 45 = 2.7459...$

Conjecture: One can multiply 4×4 matrices with fewer than 48 scalar multiplications. In fact, is seems that

 $MultRank(4) \le 45.$

Asymptotically, this would give $MultExp(4) \leq \log_4 45 = 2.7459\dots$

Note this is only a conjecture. My neural networks were only **approximations**. What remains:

- 1. Find an exact version of this algorithm.
- 2. Find an equivalent sparse neural net. Preferably one whose non-zero weights equal ± 1 .

Conjecture: One can multiply 4×4 matrices with fewer than 48 scalar multiplications. In fact, is seems that

$$MultRank(4) \le 45.$$

Asymptotically, this would give $MultExp(4) \le log_4 45 = 2.7459...$

Note this is only a conjecture. My neural networks were only **approximations**. What remains:

- 1. Find an exact version of this algorithm.
- 2. Find an equivalent sparse neural net. Preferably one whose non-zero weights equal ± 1 .

Conjecture:

$$\lim_{N\to\infty} \mathbf{MultExp}(N) = 2$$

Conjecture: One can multiply 4×4 matrices with fewer than 48 scalar multiplications. In fact, is seems that

$$MultRank(4) \le 45.$$

Asymptotically, this would give $MultExp(4) \le log_4 45 = 2.7459 \dots$

Note this is only a conjecture. My neural networks were only **approximations**. What remains:

- 1. Find an exact version of this algorithm.
- 2. Find an equivalent sparse neural net. Preferably one whose non-zero weights equal ± 1 .

Conjecture:

$$\lim_{N\to\infty} \textbf{MultExp}(N) = 2$$

Currently, it is known $\lim_{N\to\infty} \text{MultExp}(N) < 2.3728...$ (Josh Alman and Virginia Williams, 2021).

Update

DeepMind

Discovering novel algorithms with AlphaTensor

This sheds light on a 50-year-old open question in mathematics about finding the fastest way to multiply two matrices.

3 weeks ago

DeepMind AI finds new way to multiply numbers and speed up ...

Matrix multiplication – where two grids of numbers are multiplied together ... But DeepMind's AI has now discovered a faster technique that...

3 weeks ago

DeepMind breaks 50-year math record using Al; new record falls a week later

Last week, DeepMind announced it discovered a more efficient way to perform matrix multiplication, conquering a 50-year-old record.

2 weeks ago

Update

Nature announced in October, 2022 that:

Theorem (FBHHRBNRSSSHK)

 $\textbf{MultRank}(4) \leq 47^* \ \textit{and} \ \textbf{MultRank}(5) \leq 96^*$

Update

Nature announced in October, 2022 that:

Theorem (FBHHRBNRSSSHK)

 $MultRank(4) \le 47^*$ and $MultRank(5) \le 96^*$

It made me feel better that to discover this results, this team used 64 state-of-the-art TPU cores, trained for 600,000 iterations: a non-academic battery of computational resources that cost somewhere between \$10,000 and \$100,000 to run.

* for 0,1-matrices.

Figure 6: RL for AlphaTensor

THE FBHHRBNRSSSHK-ALGORITHM FOR MULTIPLICATION IN $\mathbb{Z}_2^{5\times 5}$ IS STILL NOT THE END OF THE STORY

ABSTRACT. In response to a recent Nature article which announced an algorithm for multiplying 5×5 -matrices over \mathbb{Z}_2 with only 96 multiplications, two fewer than the previous record, we present an algorithm that does the job with only 95 multiplications.

1. Introduction

Ever since Strassen [8] discovered that 2×2 -matrices can be multiplied with only 7 multiplications in the coefficient domain, there is a mystery around the complexity of matrix multiplication. For asymptotically large n, the best we know at the moment is a multiplication algorithm that requires $O(n^{2.3728999})$ operations [1], slightly improving upon the previous record $O(n^{2.3728639})$ [5]. For n=3, it is known that 23 multiplications suffice in a non-commutative setting [4]. For n=4, we can solve the problem with 49 multiplications by applying Strassen's algorithm recursively. In a recent article that received considerable media attention, Fawzi et al. [2] used a machine learning approach to find a multiplication scheme with 47 multiplications are discovered from the problem of the problem of the problem with 47 multiplications.