
Fast matrix multiplication: a brief adventure in neural
networks and computational algebra

Thomas Pietraho

Fall, 2022

A Strange Theorem

A couple of times in my life, I have encountered the following strange statement:

Theorem

Two N × N matrices can be multiplied using only N2.8074... scalar multiplications.

Intimidated by irrational numbers, I always promptly averted my gaze. What could

this statement possibly mean?

Let’s look at 2× 2 matrices:

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a22b12 + a22b22

]

To compute this, 8 = 23 scalar products must be found (and a few scalar sums).

Thinking about this, we get

Theorem

Two N × N matrices can be multiplied using N3 scalar multiplications.

A Strange Theorem

A couple of times in my life, I have encountered the following strange statement:

Theorem

Two N × N matrices can be multiplied using only N2.8074... scalar multiplications.

Intimidated by irrational numbers, I always promptly averted my gaze. What could

this statement possibly mean?

Let’s look at 2× 2 matrices:

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a22b12 + a22b22

]

To compute this, 8 = 23 scalar products must be found (and a few scalar sums).

Thinking about this, we get

Theorem

Two N × N matrices can be multiplied using N3 scalar multiplications.

A Strange Theorem

A couple of times in my life, I have encountered the following strange statement:

Theorem

Two N × N matrices can be multiplied using only N2.8074... scalar multiplications.

Intimidated by irrational numbers, I always promptly averted my gaze. What could

this statement possibly mean?

Let’s look at 2× 2 matrices:

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a22b12 + a22b22

]

To compute this, 8 = 23 scalar products must be found (and a few scalar sums).

Thinking about this, we get

Theorem

Two N × N matrices can be multiplied using N3 scalar multiplications.

Note: N2.8074... represents a huge savings over N3.

For computers

1. addition is fast

2. multiplication is slow

If N ≈ 107, then

1. N2.8074... ≈ 1019.65...

2. N3 ≈ 1021

For multiplication of 107 × 107 matrices, the “strange”

theorem cuts the number of scalar multiplications

by a factor of about 101.35 ≈ 22.

Note: N2.8074... represents a huge savings over N3.

For computers

1. addition is fast

2. multiplication is slow

If N ≈ 107, then

1. N2.8074... ≈ 1019.65...

2. N3 ≈ 1021

For multiplication of 107 × 107 matrices, the “strange”

theorem cuts the number of scalar multiplications

by a factor of about 101.35 ≈ 22.

Note: N2.8074... represents a huge savings over N3.

For computers

1. addition is fast

2. multiplication is slow

If N ≈ 107, then

1. N2.8074... ≈ 1019.65...

2. N3 ≈ 1021

For multiplication of 107 × 107 matrices, the “strange”

theorem cuts the number of scalar multiplications

by a factor of about 101.35 ≈ 22.

Note: N2.8074... represents a huge savings over N3.

For computers

1. addition is fast

2. multiplication is slow

If N ≈ 107, then

1. N2.8074... ≈ 1019.65...

2. N3 ≈ 1021

For multiplication of 107 × 107 matrices, the “strange”

theorem cuts the number of scalar multiplications

by a factor of about 101.35 ≈ 22.

Strassen’s observation: 2× 2 matrices

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

First form products:

m1 =a11b11

m2 =a12b21

m3 =a11b12

m4 =a12b22

m5 =a21b11

m6 =a22b21

m7 =a22b12

m8 =a22b22

then combine them:

c11 =m1 +m2

c12 =m3 +m4

c21 =m5 +m6

c22 =m7 +m8

Strassen’s observation: 2× 2 matrices

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

First form products:

m1 =a11b11

m2 =a12b21

m3 =a11b12

m4 =a12b22

m5 =a21b11

m6 =a22b21

m7 =a22b12

m8 =a22b22

then combine them:

c11 =m1 +m2

c12 =m3 +m4

c21 =m5 +m6

c22 =m7 +m8

Strassen’s observation: 2× 2 matrices

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

Strassen formed:

m1 =(a11 + a22)(b11 + b22)

m2 =(a21 + a22)b11

m3 =a11(b12 − b22)

m4 =a22(b21 − b11)

m5 =(a11 + a12)b22

m6 =(a21 − a11)(b11 + b12)

m7 =(a12 − a22)(b21 + b22)

and combined them:

c11 =m1 +m4 −m5 +m7

c12 =m3 +m5

c21 =m2 +m4

c22 =m1 −m2 +m3 +m6

Theorem

2× 2 matrices can be multiplied using 7 only scalar multiplications!

Strassen’s observation: 2× 2 matrices

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

Strassen formed:

m1 =(a11 + a22)(b11 + b22)

m2 =(a21 + a22)b11

m3 =a11(b12 − b22)

m4 =a22(b21 − b11)

m5 =(a11 + a12)b22

m6 =(a21 − a11)(b11 + b12)

m7 =(a12 − a22)(b21 + b22)

and combined them:

c11 =m1 +m4 −m5 +m7

c12 =m3 +m5

c21 =m2 +m4

c22 =m1 −m2 +m3 +m6

Theorem

2× 2 matrices can be multiplied using 7 only scalar multiplications!

Strassen’s observation: 2× 2 matrices

[
a11 a12
a21 a22

][
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

Strassen formed:

m1 =(a11 + a22)(b11 + b22)

m2 =(a21 + a22)b11

m3 =a11(b12 − b22)

m4 =a22(b21 − b11)

m5 =(a11 + a12)b22

m6 =(a21 − a11)(b11 + b12)

m7 =(a12 − a22)(b21 + b22)

and combined them:

c11 =m1 +m4 −m5 +m7

c12 =m3 +m5

c21 =m2 +m4

c22 =m1 −m2 +m3 +m6

Theorem

2× 2 matrices can be multiplied using 7 only scalar multiplications!

Strassen’s observation: 2k × 2k block matrices

[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]

Form the products:

M1 =(A11 + A22)(B11 + B22)

M2 =(A21 + A22)B11

M3 =A11(B12 − B22)

M4 =A22(B21 − B11)

M5 =(A11 + A12)B22

M6 =(A21 − A11)(B11 + B12)

M7 =(A12 − A22)(B21 + B22)

then combine them:

C11 =M1 +M4 −M5 +M7

C12 =M3 +M5

C21 =M2 +M4

C22 =M1 −M2 +M3 +M6

Strassen’s observation: 2k × 2k block matrices

[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]

Form the products:

M1 =(A11 + A22)(B11 + B22)

M2 =(A21 + A22)B11

M3 =A11(B12 − B22)

M4 =A22(B21 − B11)

M5 =(A11 + A12)B22

M6 =(A21 − A11)(B11 + B12)

M7 =(A12 − A22)(B21 + B22)

then combine them:

C11 =M1 +M4 −M5 +M7

C12 =M3 +M5

C21 =M2 +M4

C22 =M1 −M2 +M3 +M6

This sets off a chain of consequences:

1. 4× 4 matrices can be multiplied using 49 scalar multiplications.

2. If n = 2k , then n × n matrices can be multiplied using 7k scalar multiplications.

3. If n = 2k , then n × n matrices can be multiplied using 2k log2 7 scalar

multiplications.

With a little slight-of-hand, we write N = 2k concluding:

Theorem (Strassen)

N × N matrices can be multiplied using N log2 7 ≈ N2.8074... scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss

this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 × 2 matrices using only 6 scalar

multiplications? Or can one reduce the exponent 2.8074 . . . some

other way?

This sets off a chain of consequences:

1. 4× 4 matrices can be multiplied using 49 scalar multiplications.

2. If n = 2k , then n × n matrices can be multiplied using 7k scalar multiplications.

3. If n = 2k , then n × n matrices can be multiplied using 2k log2 7 scalar

multiplications.

With a little slight-of-hand, we write N = 2k concluding:

Theorem (Strassen)

N × N matrices can be multiplied using N log2 7 ≈ N2.8074... scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss

this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 × 2 matrices using only 6 scalar

multiplications? Or can one reduce the exponent 2.8074 . . . some

other way?

This sets off a chain of consequences:

1. 4× 4 matrices can be multiplied using 49 scalar multiplications.

2. If n = 2k , then n × n matrices can be multiplied using 7k scalar multiplications.

3. If n = 2k , then n × n matrices can be multiplied using 2k log2 7 scalar

multiplications.

With a little slight-of-hand, we write N = 2k concluding:

Theorem (Strassen)

N × N matrices can be multiplied using N log2 7 ≈ N2.8074... scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss

this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 × 2 matrices using only 6 scalar

multiplications? Or can one reduce the exponent 2.8074 . . . some

other way?

This sets off a chain of consequences:

1. 4× 4 matrices can be multiplied using 49 scalar multiplications.

2. If n = 2k , then n × n matrices can be multiplied using 7k scalar multiplications.

3. If n = 2k , then n × n matrices can be multiplied using 2k log2 7 scalar

multiplications.

With a little slight-of-hand, we write N = 2k concluding:

Theorem (Strassen)

N × N matrices can be multiplied using N log2 7 ≈ N2.8074... scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss

this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 × 2 matrices using only 6 scalar

multiplications? Or can one reduce the exponent 2.8074 . . . some

other way?

This sets off a chain of consequences:

1. 4× 4 matrices can be multiplied using 49 scalar multiplications.

2. If n = 2k , then n × n matrices can be multiplied using 7k scalar multiplications.

3. If n = 2k , then n × n matrices can be multiplied using 2k log2 7 scalar

multiplications.

With a little slight-of-hand, we write N = 2k concluding:

Theorem (Strassen)

N × N matrices can be multiplied using N log2 7 ≈ N2.8074... scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss

this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 × 2 matrices using only 6 scalar

multiplications? Or can one reduce the exponent 2.8074 . . . some

other way?

This sets off a chain of consequences:

1. 4× 4 matrices can be multiplied using 49 scalar multiplications.

2. If n = 2k , then n × n matrices can be multiplied using 7k scalar multiplications.

3. If n = 2k , then n × n matrices can be multiplied using 2k log2 7 scalar

multiplications.

With a little slight-of-hand, we write N = 2k concluding:

Theorem (Strassen)

N × N matrices can be multiplied using N log2 7 ≈ N2.8074... scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss

this over and say the theorem is true “asymptotically.”

Question: Can one do better?

2 × 2 matrices using only 6 scalar

multiplications? Or can one reduce the exponent 2.8074 . . . some

other way?

This sets off a chain of consequences:

1. 4× 4 matrices can be multiplied using 49 scalar multiplications.

2. If n = 2k , then n × n matrices can be multiplied using 7k scalar multiplications.

3. If n = 2k , then n × n matrices can be multiplied using 2k log2 7 scalar

multiplications.

With a little slight-of-hand, we write N = 2k concluding:

Theorem (Strassen)

N × N matrices can be multiplied using N log2 7 ≈ N2.8074... scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss

this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 × 2 matrices using only 6 scalar

multiplications?

Or can one reduce the exponent 2.8074 . . . some

other way?

This sets off a chain of consequences:

1. 4× 4 matrices can be multiplied using 49 scalar multiplications.

2. If n = 2k , then n × n matrices can be multiplied using 7k scalar multiplications.

3. If n = 2k , then n × n matrices can be multiplied using 2k log2 7 scalar

multiplications.

With a little slight-of-hand, we write N = 2k concluding:

Theorem (Strassen)

N × N matrices can be multiplied using N log2 7 ≈ N2.8074... scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss

this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 × 2 matrices using only 6 scalar

multiplications? Or can one reduce the exponent 2.8074 . . . some

other way?

Other efforts and theoretical bounds

Definition

Let MultRank(N) be the minimum number of scalar multiplications necessary to

multiply two N × N matrices. Let MultExp(N) be the corresponding exponent.

Similar advances:

Theorem (Laderman, 1976)

MultRank(3) ≤ 23.

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11.

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15.

Theorem (Strassen, 1969)

MultRank(4) ≤ 49.

Lower bounds:

Theorem (Winograd, 1971)

7 ≤ MultRank(2)

Theorem (Bläser, 2003)

19 ≤ MultRank(3) ≤ 23

10 ≤ MultRank(2, 2, 3) ≤ 11

14 ≤ MultRank(2, 3, 3) ≤ 15

33 ≤ MultRank(4) ≤ 49

There is potential for significant

improvement in existing algorithms

when N ≥ 3.

Other efforts and theoretical bounds

Definition

Let MultRank(N) be the minimum number of scalar multiplications necessary to

multiply two N × N matrices. Let MultExp(N) be the corresponding exponent.

Similar advances:

Theorem (Laderman, 1976)

MultRank(3) ≤ 23.

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11.

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15.

Theorem (Strassen, 1969)

MultRank(4) ≤ 49.

Lower bounds:

Theorem (Winograd, 1971)

7 ≤ MultRank(2)

Theorem (Bläser, 2003)

19 ≤ MultRank(3) ≤ 23

10 ≤ MultRank(2, 2, 3) ≤ 11

14 ≤ MultRank(2, 3, 3) ≤ 15

33 ≤ MultRank(4) ≤ 49

There is potential for significant

improvement in existing algorithms

when N ≥ 3.

Other efforts and theoretical bounds

Definition

Let MultRank(N) be the minimum number of scalar multiplications necessary to

multiply two N × N matrices. Let MultExp(N) be the corresponding exponent.

Similar advances:

Theorem (Laderman, 1976)

MultRank(3) ≤ 23.

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11.

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15.

Theorem (Strassen, 1969)

MultRank(4) ≤ 49.

Lower bounds:

Theorem (Winograd, 1971)

7 ≤ MultRank(2)

Theorem (Bläser, 2003)

19 ≤ MultRank(3) ≤ 23

10 ≤ MultRank(2, 2, 3) ≤ 11

14 ≤ MultRank(2, 3, 3) ≤ 15

33 ≤ MultRank(4) ≤ 49

There is potential for significant

improvement in existing algorithms

when N ≥ 3.

Question: This is going to be a huge mess. How could one possibly

improve any of these results without reams of computations?

Obligatory “math on glass” image from The Accountant

Neural networks: a brief introduction

Neural Nets

A neural net N is an object:

x1 x2 x3 xn. . .

magic!

y1 y2 y3 y4 ym. . .

Input ∈ Rn

Output ∈ Rm

It is a fancy way to produce a function:

FN : Rn → Rm.

Neural nets are made of “neurons”

xk. . .x1

σ(
∑

wixi + bi)

wkw1

Where σ is a function:

−20 −10 10 20

0.2

0.4

0.6

0.8

1

1.2

Neural nets are made of “neurons”

xk. . .x1

σ(
∑

wixi + bi)

wkw1

Where σ is a function:

−4 −2 2 4

0.2

0.4

0.6

0.8

1

1.2

Neural nets are made of “neurons”

xk. . .x1

σ(
∑

wixi + bi)

wkw1

Where σ is a function:

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

1.2

Neural nets are made of “neurons”

xk. . .x1

σ(
∑

wixi + bi)

wkw1

Where σ is a function:

−0.4 −0.2 0.2 0.4

−0.4

−0.2

0.2

0.4

0.6

Neurons in layers make a neural network

x1 x2 x3 xn. . .

. . .

. . .

h1 h2 h3 h4 hk

y1 y2 y3 ym

Input Layer ∈ Rn

Output Layer ∈ Rm

Hidden Layer ∈ Rk

Each edge may have a different w called its “weight”. Each neuron may have a

different b called its “bias.”

Neurons in many layers make a “deep” neural net

x1 x2 x3 xn. . .

. . .

. . .

. . .

. . .

h1 h2 h3 h4 hk

h′1 h′2 h′3 h′4 h′5 h′l

h′′1 h′′2 h′′3 h′′4 h′′p

y1 y2 y3 ym

Input Layer ∈ Rn

Output Layer ∈ Rm

Hidden Layer ∈ Rk

Hidden Layer ∈ Rl

Hidden Layer ∈ Rp

The problem in deep learning:

Given, a perhaps not fully understood function F , find a neural net-

work N that recovers F . That is:

FN ≈ F .

The problem in deep learning:

Given, a perhaps not fully understood function F , find a neural net-

work N that recovers F . That is:

FN ≈ F .

Image by R. Fithen

x

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

y

The problem in deep learning:

Given, a perhaps not fully understood function F , find a neural net-

work N that recovers F . That is:

FN ≈ F .

Here each handwritten digit is given

by a 28× 28 array of greyscale pixels.

We’d like to understand

F : R784 → R

or better still:

F : R784 → R10

This neural net is 85% accurate:

Image by A. Nielsen

ImageNet Challenge: Given 256 × 256 RGB images classified into

1000 classes. Find a neural network N that describes the classifica-

tion function:

F : R3·2562 → R1000.

Google’s Inception neural net N achieves 95% top-5 accuracy. The big picture of

the neural net:

N =

Image by Google

ImageNet Challenge: Given 256 × 256 RGB images classified into

1000 classes. Find a neural network N that describes the classifica-

tion function:

F : R3·2562 → R1000.

Google’s Inception neural net N achieves 95% top-5 accuracy. The big picture of

the neural net:

N =

Image by Google

Fun Problem: Predict species of bird based on photographic image.

cardinal wood duck anhinga chickadee

Accuracy 87%. (P., 2017)

Fun Problem: Predict book genre based on its cover.

history science romance sports

Accuracy 76%. (with Parikshit Sharma, ’17, IndieBio)

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

The Whole Process

Goal: Understand a, perhaps

poorly defined, function F .

1. Start with a set of data points:

(xi ,F (xi))

2. Build a neural network N

3. Compare with output of N :

(xi ,FN (xi))

4. Tweak weights w and bias b decreasing

Error = ave|F (xi)− FN (xi)|

5. Continue tweaking w and bias b until error is

as small as possible

6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

x

y

A machine learning approach to fast
matrix multiplication

Back to matrix multiplication

Goal: Design a neural network that mimics 2× 2 matrix multiplication:

F : R2·4 → R4

F (A,B) = A · B

Back to matrix multiplication

Goal: Design a neural network that mimics 2× 2 matrix multiplication:

F : R2·4 → R4

F (A,B) = A · B

Step 1: Start with a set of data points:

(xi ,F (xi))

This is easy. Generate lots of random 2× 2 matrices xi = (Ai ,Bi) as well as

their products F (xi) = Ai · Bi .

Back to matrix multiplication

Goal: Design a neural network that mimics 2× 2 matrix multiplication:

F : R2·4 → R4

F (A,B) = A · B

Step 2: Build a neural network N

Back to matrix multiplication

Goal: Design a neural network that mimics 2× 2 matrix multiplication:

F : R2·4 → R4

F (A,B) = A · B

Step 2: Build a neural network N

Need: A new type of neuron. One whose output is the product of its two inputs.

x1x2

x1x2

A new type of neural net!

Neural Net for matrix multiplication

a22a21a12a11 b22b21b12b11

a21b12 + a22b22a21b11 + a22b21a11b12 + a12b22a11b11 + a12b21

Neural Net for matrix multiplication

a22a21a12a11 b22b21b12b11

a22a22a21a21a12a12a11a11 b22b21b12b11b22b21b12b11

a22b22a22b21a21b12a21b11a12b22a12b21a11b12a11b11

a21b12 + a22b22a21b11 + a22b21a11b12 + a12b22a11b11 + a12b21

Step 3: Compare with output of N :

(xi ,FN (xi))

Step 4: Tweak weights w and bias b for each edge so that

Error = ave|F (xi)− FN (xi)|

decreases.

Step 5: Continue tweaking w and bias b until error is as small as

possible

The Result:

Step 3: Compare with output of N :

(xi ,FN (xi))

Step 4: Tweak weights w and bias b for each edge so that

Error = ave|F (xi)− FN (xi)|

decreases.

Step 5: Continue tweaking w and bias b until error is as small as

possible

The Result:

Machine-trained neural net for matrix multiplication

a22a21a12a11 b22b21b12b11

a21b12 + a22b22a21b11 + a22b21a11b12 + a12b22a11b11 + a12b21

Neural Net for Strassen’s matrix multiplication

a22a21a12a11 b22b21b12b11

a21b12 + a22b22a21b11 + a22b21a11b12 + a12b22a11b11 + a12b21

Neural Net for Strassen’s matrix multiplication

a22a21a12a11 b22b21b12b11

a21b12 + a22b22a21b11 + a22b21a11b12 + a12b22a11b11 + a12b21

Machine-trained neural net for Strassen’s matrix multiplication

a22a21a12a11 b22b21b12b11

a21b12 + a22b22a21b11 + a22b21a11b12 + a12b22a11b11 + a12b21

In one day, our new fancied-up neural

nets replicated:

Theorem (Strassen, 1969)

MultRank(2) ≤ 7

Theorem (Laderman, 1976)

MultRank(3) ≤ 23

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15

How can you tell this actually works?

Plot error vs. training time.

In one day, our new fancied-up neural

nets replicated:

Theorem (Strassen, 1969)

MultRank(2) ≤ 7

Theorem (Laderman, 1976)

MultRank(3) ≤ 23

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15

How can you tell this actually works?

Plot error vs. training time.

In one day, our new fancied-up neural

nets replicated:

Theorem (Strassen, 1969)

MultRank(2) ≤ 7

Theorem (Laderman, 1976)

MultRank(3) ≤ 23

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15

How can you tell this actually works?

Plot error vs. training time.

In one day, our new fancied-up neural

nets replicated:

Theorem (Strassen, 1969)

MultRank(2) ≤ 7

Theorem (Laderman, 1976)

MultRank(3) ≤ 23

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15

How can you tell this actually works?

Plot error vs. training time.

In one day, our new fancied-up neural

nets replicated:

Theorem (Strassen, 1969)

MultRank(2) ≤ 7

Theorem (Laderman, 1976)

MultRank(3) ≤ 23

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15

How can you tell this actually works?

Plot error vs. training time.

In one day, our new fancied-up neural

nets replicated:

Theorem (Strassen, 1969)

MultRank(2) ≤ 7

Theorem (Laderman, 1976)

MultRank(3) ≤ 23

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15

How can you tell this actually works?

Plot error vs. training time.

In one day, our new fancied-up neural

nets replicated:

Theorem (Strassen, 1969)

MultRank(2) ≤ 7

Theorem (Laderman, 1976)

MultRank(3) ≤ 23

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15

How can you tell this actually works?

Plot error vs. training time.

Figure 3: N = 2 Rank = 7

In one day, our new fancied-up neural

nets replicated:

Theorem (Strassen, 1969)

MultRank(2) ≤ 7

Theorem (Laderman, 1976)

MultRank(3) ≤ 23

Theorem (Waksman, 1970)

MultRank(2, 2, 3) ≤ 11

Theorem (Hopcroft and Kerr, 1971)

MultRank(2, 3, 3) ≤ 15

How can you tell this actually works?

Plot error vs. training time.

Figure 3: N = 3 Rank = 23

Failures

Figure 4: N = 2 Rank = 6

Failures

Figure 4: N = 3 Rank = 22

Failures

Figure 4: N = 3 Rank = 21

Failures

Figure 4: N = 2, 2, 3 Rank = 10

I was about to call an end to all of

this, but then a recent preprint

mentioned a forgotten result:

Theorem (Stothers, 2011)

MultRank(4) ≤ 48.

It is the first result that has beat

Strassen’s exponent! Here

MultExp(4) ≤ log4 48 ≈ 2.7924 . . .

Question: Can a computer fig-

ure this out?

I was about to call an end to all of

this, but then a recent preprint

mentioned a forgotten result:

Theorem (Stothers, 2011)

MultRank(4) ≤ 48.

It is the first result that has beat

Strassen’s exponent! Here

MultExp(4) ≤ log4 48 ≈ 2.7924 . . .

Question: Can a computer fig-

ure this out?

I was about to call an end to all of

this, but then a recent preprint

mentioned a forgotten result:

Theorem (Stothers, 2011)

MultRank(4) ≤ 48.

It is the first result that has beat

Strassen’s exponent! Here

MultExp(4) ≤ log4 48 ≈ 2.7924 . . .

Question: Can a computer fig-

ure this out?

I was about to call an end to all of

this, but then a recent preprint

mentioned a forgotten result:

Theorem (Stothers, 2011)

MultRank(4) ≤ 48.

It is the first result that has beat

Strassen’s exponent! Here

MultExp(4) ≤ log4 48 ≈ 2.7924 . . .

Question: Can a computer fig-

ure this out?

Yes!

Figure 5: N = 4 Rank = 48

I was about to call an end to all of

this, but then a recent preprint

mentioned a forgotten result:

Theorem (Stothers, 2011)

MultRank(4) ≤ 48.

It is the first result that has beat

Strassen’s exponent! Here

MultExp(4) ≤ log4 48 ≈ 2.7924 . . .

Question: Can a computer fig-

ure this out?

Yes! Also:

Figure 5: N = 4 Rank = 47

I was about to call an end to all of

this, but then a recent preprint

mentioned a forgotten result:

Theorem (Stothers, 2011)

MultRank(4) ≤ 48.

It is the first result that has beat

Strassen’s exponent! Here

MultExp(4) ≤ log4 48 ≈ 2.7924 . . .

Question: Can a computer fig-

ure this out?

Yes! Also:

Figure 5: N = 4 Rank = 46

I was about to call an end to all of

this, but then a recent preprint

mentioned a forgotten result:

Theorem (Stothers, 2011)

MultRank(4) ≤ 48.

It is the first result that has beat

Strassen’s exponent! Here

MultExp(4) ≤ log4 48 ≈ 2.7924 . . .

Question: Can a computer fig-

ure this out?

Yes! Also:

Figure 5: N = 4 Rank = 45

I was about to call an end to all of

this, but then a recent preprint

mentioned a forgotten result:

Theorem (Stothers, 2011)

MultRank(4) ≤ 48.

It is the first result that has beat

Strassen’s exponent! Here

MultExp(4) ≤ log4 48 ≈ 2.7924 . . .

Question: Can a computer fig-

ure this out?

OK, too much:

Figure 5: N = 4 Rank = 33

It looks like:

Conjecture: One can multiply 4 × 4 matrices with fewer than 48

scalar multiplications. In fact, is seems that

MultRank(4) ≤ 45.

Asymptotically, this would give MultExp(4) ≤ log4 45 = 2.7459

Note this is only a conjecture. My neural networks were only approximations. What

remains:

1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights

equal ±1.

Conjecture:

lim
N→∞

MultExp(N) = 2

Currently, it is known limN→∞ MultExp(N) < 2.3728 . . . (Josh Alman and Virginia

Williams, 2021).

It looks like:

Conjecture: One can multiply 4 × 4 matrices with fewer than 48

scalar multiplications. In fact, is seems that

MultRank(4) ≤ 45.

Asymptotically, this would give MultExp(4) ≤ log4 45 = 2.7459

Note this is only a conjecture. My neural networks were only approximations. What

remains:

1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights

equal ±1.

Conjecture:

lim
N→∞

MultExp(N) = 2

Currently, it is known limN→∞ MultExp(N) < 2.3728 . . . (Josh Alman and Virginia

Williams, 2021).

It looks like:

Conjecture: One can multiply 4 × 4 matrices with fewer than 48

scalar multiplications. In fact, is seems that

MultRank(4) ≤ 45.

Asymptotically, this would give MultExp(4) ≤ log4 45 = 2.7459

Note this is only a conjecture. My neural networks were only approximations. What

remains:

1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights

equal ±1.

Conjecture:

lim
N→∞

MultExp(N) = 2

Currently, it is known limN→∞ MultExp(N) < 2.3728 . . . (Josh Alman and Virginia

Williams, 2021).

It looks like:

Conjecture: One can multiply 4 × 4 matrices with fewer than 48

scalar multiplications. In fact, is seems that

MultRank(4) ≤ 45.

Asymptotically, this would give MultExp(4) ≤ log4 45 = 2.7459

Note this is only a conjecture. My neural networks were only approximations. What

remains:

1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights

equal ±1.

Conjecture:

lim
N→∞

MultExp(N) = 2

Currently, it is known limN→∞ MultExp(N) < 2.3728 . . . (Josh Alman and Virginia

Williams, 2021).

Update

Update

Nature announced in October, 2022 that:

Theorem (FBHHRBNRSSSHK)

MultRank(4) ≤ 47∗ and MultRank(5) ≤ 96∗

It made me feel better that to discover this results, this team used 64 state-of-the-art

TPU cores, trained for 600,000 iterations: a non-academic battery of computational

resources that cost somewhere between $10,000 and $100,000 to run.

∗ for 0,1-matrices.

Update

Nature announced in October, 2022 that:

Theorem (FBHHRBNRSSSHK)

MultRank(4) ≤ 47∗ and MultRank(5) ≤ 96∗

It made me feel better that to discover this results, this team used 64 state-of-the-art

TPU cores, trained for 600,000 iterations: a non-academic battery of computational

resources that cost somewhere between $10,000 and $100,000 to run.

∗ for 0,1-matrices.

Update

Figure 6: RL for AlphaTensor

A few days later...

	Neural networks: a brief introduction
	A machine learning approach to fast matrix multiplication

