Fast matrix multiplication: a brief adventure in neural
networks and computational algebra

Thomas Pietraho
Fall, 2022

A Strange Theorem

A couple of times in my life, | have encountered the following strange statement:

Theorem

N2-8074...

Two N x N matrices can be multiplied using only scalar multiplications.

A Strange Theorem

A couple of times in my life, | have encountered the following strange statement:

Theorem

N2-8074...

Two N x N matrices can be multiplied using only scalar multiplications.

Intimidated by irrational numbers, | always promptly averted my gaze. What could
this statement possibly mean?

A Strange Theorem

A couple of times in my life, | have encountered the following strange statement:

Theorem
Two N x N matrices can be multiplied using only N?-8074--- scalar multiplications.

Intimidated by irrational numbers, | always promptly averted my gaze. What could

this statement possibly mean?

Let's look at 2 x 2 matrices:

[all an } |:b11 b12:| _ {211b11+312b21 a1 bio + a12b2

a1 ax b1 b ap1bi1 + axnbp1 axnbiz + axnbx

To compute this, 8 = 23 scalar products must be found (and a few scalar sums).

Thinking about this, we get

Theorem
Two N x N matrices can be multiplied using N3 scalar multiplications.

Note: N2-8074-- represents a huge savings over N3.

Note: N2-8074-- represents a huge savings over N3.

For computers
1. addition is fast

2. multiplication is slow

Note: N2-8074-- represents a huge savings over N3.

For computers If N =~ 107, then
1. addition is fast 1. N2:8074... 5 1019.65...

2. multiplication is slow 2. N3 ~ 102

Note: N2-8074-- represents a huge savings over N3.

For computers If N =~ 107, then
1. addition is fast 1. N2:8074... 5 1019.65...
2. multiplication is slow 2. N3 ~ 102

For multiplication of 107 x 107 matrices, the “strange”
theorem cuts the number of scalar multiplications
by a factor of about 1035 ~ 22.

Strassen’s observation: 2 x 2 matrices

ain aw| |bun b2 |a1 c2
a1 axn| |ba bx 1

First form products:

my =a11 by
my =a1pbyy
m3 =a11 b1z
my =ai12b
ms =ap1 by
me =ax by
my7 =axnbi

mg =axbxn

Strassen’s observation: 2 x 2 matrices

ain aw| |bun b2 |a1 c2
a1 axn| |ba bx 1

First form products: then combine them:
my =ai1 b1
my =a1pbyy
m3 =ai1 b1 c11 =my + my
my =aix by Cl12 =m3 + my
ms =ap1 b11 C21 =ms + me
me =az b1 Cp =m7 + mg
m7 =axnbi2

mg =axbxn

Strassen’s observation: 2 x 2 matrices

ain a2 |bun bi2| |a1 cn
a1 axn| |ba b 1 2

Strassen formed: and combined them:

my =(a11 + a22)(b11 + b22)

mo =(ap1 + a2)b11

Cc11 =my + mg — ms + my
m3 =a11 (b2 — b22)

C12 =m3 + ms
mg =ax(b21 — b11)

Cp1 =mo + m,
ms =(a11 + a12) b 2 2 *
mg =(az21 — a11)(b11 + b12)

m7 =(a12 — a22)(ba1 + b2)

Cop =m1 — My + m3 + mg

Theorem

2 X 2 matrices can be multiplied using 7 only scalar multiplications!

Strassen’s observation: 2 x 2 matrices

ain a2 |bun bi2| |a1 cn
a1 axn| |ba b 1 2

Strassen formed: and combined them:

my =(a11 + a22)(b11 + b22)

mo =(ap1 + a2)b11

Cc11 =my + mg — ms + my
m3 =a11 (b2 — b22)

C12 =m3 + ms
mg =ax(b21 — b11)

Cp1 =mo + m,
ms =(a11 + a12) b 2 2 *
mg =(az21 — a11)(b11 + b12)

m7 =(a12 — a22)(ba1 + b2)

Cop =m1 — My + m3 + mg

Theorem

2 X 2 matrices can be multiplied using 7 only scalar multiplications!

Strassen’s observation: 2 x 2 matrices

ain a2 |bun bi2| |a1 cn
a1 axn| |ba b 1 2

Strassen formed: and combined them:

my =(a11 + a22)(b11 + b22)

mo =(ap1 + a2)b11

Cc11 =my + mg — ms + my
m3 =a11 (b2 — b22)

C12 =m3 + ms
mg =ax(b21 — b11)

Cp1 =mo + m,
ms =(a11 + a12) b 2 2 *
mg =(az21 — a11)(b11 + b12)

m7 =(a12 — a22)(ba1 + b2)

Cop =m1 — My + m3 + mg

Theorem

2 X 2 matrices can be multiplied using 7 only scalar multiplications!

Strassen’s observation: 2k x 2k block matrices

Aol ‘ Axn

Au | A]

Bu | B _ | Cu | G
B>y ‘ B Cn ‘ C

Form the products:

My =(A11 + Ax)(Bi1 + B22)
Mo =(Az1 + A2)Bi1
M3 =A11(B12 — B2)
My =Ax(B21 — Bi1)
Ms =(A11 + A12) B2z
Me =(A21 — A11)(B11 + Bi2)
M7 =(A12 — Ax)(B21 + B22)

Strassen’s observation: 2k x 2k block matrices

Au | A Bu | B _ | Cu | G
Ag | Az Bx | Bz Ca | G2
Form the products: then combine them:

My =(A11 + Ax)(Bi1 + B22)
Mo =(Az1 + A2)Bi1
M3 =A11(B12 — B2)
My =Ax(B21 — Bi1)
Ms =(A11 + A12) B2z
Me =(A21 — A11)(B11 + Bi2)
M7 =(A12 — Ax)(B21 + B22)

Ci1 =My + My — Ms + M7
Cio =M3 + Ms
Cor =M + My
Coo =My — Mz + M3 + Mg

This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.

This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.

2. If n =2k, then n x n matrices can be multiplied using 7% scalar multiplications.

This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.
2. If n =2k, then n x n matrices can be multiplied using 7% scalar multiplications.

3. If n =2k, then n x n matrices can be multiplied using 2k'°827 scalar
multiplications.

This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.
2. If n =2k, then n x n matrices can be multiplied using 7% scalar multiplications.

3. If n =2k, then n x n matrices can be multiplied using 2k'°827 scalar
multiplications.

With a little slight-of-hand, we write N = 2% concluding:

Theorem (Strassen)

7 ~ |2-8074...

N x N matrices can be multiplied using N'°&2 scalar multiplications.

This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.
2. If n =2k, then n x n matrices can be multiplied using 7% scalar multiplications.

3. If n =2k, then n x n matrices can be multiplied using 2k'°827 scalar
multiplications.

With a little slight-of-hand, we write N = 2% concluding:

Theorem (Strassen)

7 ~ |2-8074...

N x N matrices can be multiplied using N'°&2 scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss
this over and say the theorem is true “asymptotically.”

This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.
2. If n =2k, then n x n matrices can be multiplied using 7% scalar multiplications.

3. If n =2k, then n x n matrices can be multiplied using 2k'°827 scalar
multiplications.

With a little slight-of-hand, we write N = 2% concluding:

Theorem (Strassen)

7 ~ |2-8074...

N x N matrices can be multiplied using N'°&2 scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss
this over and say the theorem is true “asymptotically.”

Question: Can one do better?

This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.
2. If n =2k, then n x n matrices can be multiplied using 7% scalar multiplications.

3. If n =2k, then n x n matrices can be multiplied using 2k'°827 scalar
multiplications.

With a little slight-of-hand, we write N = 2% concluding:

Theorem (Strassen)

7 ~ |2-8074...

N x N matrices can be multiplied using N'°&2 scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss
this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 X 2 matrices using only 6 scalar
multiplications?

This sets off a chain of consequences:

1. 4 X 4 matrices can be multiplied using 49 scalar multiplications.
2. If n =2k, then n x n matrices can be multiplied using 7% scalar multiplications.

3. If n =2k, then n x n matrices can be multiplied using 2k'°827 scalar
multiplications.

With a little slight-of-hand, we write N = 2% concluding:

Theorem (Strassen)

7 ~ |2-8074...

N x N matrices can be multiplied using N'°&2 scalar multiplications.

Note: This is only technically true for N = 2k for some k, but most people just gloss
this over and say the theorem is true “asymptotically.”

Question: Can one do better? 2 X 2 matrices using only 6 scalar
multiplications? Or can one reduce the exponent 2.8074 ... some
other way?

Other efforts and theoretical bounds

Definition
Let MultRank(N) be the minimum number of scalar multiplications necessary to
multiply two N x N matrices. Let MultExp(/N) be the corresponding exponent.

Other efforts and theoretical bounds

Definition
Let MultRank(N) be the minimum number of scalar multiplications necessary to
multiply two N x N matrices. Let MultExp(/N) be the corresponding exponent.

Similar advances:

Theorem (Laderman, 1976)
MultRank(3) < 23.

Theorem (Waksman, 1970)
MultRank(2, 2, 3) < 11.

Theorem (Hopcroft and Kerr, 1971)
MultRank(2, 3, 3) < 15.

Theorem (Strassen, 1969)
MultRank(4) < 49.

Other efforts and theoretical bounds

Definition

Let MultRank(N) be the minimum number of scalar multiplications necessary to
multiply two N x N matrices. Let MultExp(/N) be the corresponding exponent.

Similar advances: Lower bounds:
Theorem (Laderman, 1976) Theorem (Winograd, 1971)
MultRank(3) < 23. 7 < MultRank(2)
Theorem (Waksman, 1970) Theorem (Bléser, 2003)
MultRank(2, 2,3) < 11. 19 < MultRank(3) < 23
10 < MultRank(2,2,3) < 11
Theorem (Hopcroft and Kerr, 1971) 14 < MultRank(2,3,3) < 15
MultRank(2, 3, 3) < 15. 33 < MultRank(4) < 49
There is potential for significant
Theorem (Strassen, 1969) ere is potential for significan

improvement in existing algorithms

MultRank(4) < 49. when N > 3.

Question: This is going to be a huge mess. How could one possibly
improve any of these results without reams of computations?

Obligatory “math on glass” image from The Accountant

Neural networks: a brief introduction

Neural Nets

A neural net NV is an object:

Output € R™

magic!

Input € R”

It is a fancy way to produce a function:

Fn iR — R™.

Neural nets are made of “neurons”

Where o is a function:

a(>° wixi + b;)

Neural nets are made of “neurons”

Where o is a function:

a(>° wixi + b;)

Neural nets are made of “neurons”

Where o is a function:

a(>° wixi + b;)

Neural nets are made of “neurons”

Where o is a function:

a(>° wixi + b;) o2

0.4 0.2 0.2 0.4

Neurons in layers make a neural network

Output Layer € R™
Hidden Layer € R¥

Input Layer € R”

Each edge may have a different w called its “weight”. Each neuron may have a
different b called its “bias.”

Neurons in many layers make a “deep” neural net

Output Layer € R™

Hidden Layer € RP

NS > N ==
S SESE =SS0
S A LSO R
/évr'//“v»*!«v»\‘\\v ==
A Hidden Layer € R/
S

ll II
NS AU

!
h5
~ _
NSRS IS S

S
SIS ==
(SRR

Hidden Layer € R¥

Input Layer € R”

The problem in deep learning:

Given, a perhaps not fully understood function F, find a neural net-
work N that recovers F. That is:

Fn = F.

The problem in deep learning:

Given, a perhaps not fully understood function F, find a neural net-
work N that recovers F. That is:

Fn = F.

180

140

+ data
Neural Network Fit

|h1 ha

Image by R. Fithen

The problem in deep learning;:
Given, a perhaps not fully understood function F, find a neural net-
work N that recovers F. That is:

Fn = F.

@ This neural net is 85% accurate:

Here each handwritten digit is given
by a 28 x 28 array of greyscale pixels.
We'd like to understand

F:R™® SR

or better still:

F - R784 N RIO

Image by A. Nielsen

ImageNet Challenge: Given 256 x 256 RGB images classified into
1000 classes. Find a neural network N that describes the classifica-
tion function:

F - R3:256° _, 1000

ImageNet Challenge: Given 256 x 256 RGB images classified into
1000 classes. Find a neural network N that describes the classifica-

tion function:
2
F - R3-256 R1000

Google's Inception neural net A/ achieves 95% top-5 accuracy. The big picture of
the neural net:

Image by Google

[Fun Problem: Predict species of bird based on photographic image.]

cardinal wood duck anhinga chickadee

Accuracy 87%. (P., 2017)

Fun Problem:

“The Oxford llustrated History
SFIRST
WORLD

s WAR

history

science

Predict book genre based on its cover.

Starting
Stren,

Basic Barbell Training
$ed Eliion

Mark Rippetoc_
A

romance sports

Accuracy 76%. (with Parikshit Sharma, '17, IndieBio)

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:

(xi, F(xi))

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

5. Continue tweaking w and bias b until error is
as small as possible

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

5. Continue tweaking w and bias b until error is
as small as possible

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

5. Continue tweaking w and bias b until error is
as small as possible

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

5. Continue tweaking w and bias b until error is
as small as possible

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

5. Continue tweaking w and bias b until error is
as small as possible

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

5. Continue tweaking w and bias b until error is
as small as possible

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far ()]

5. Continue tweaking w and bias b until error is
as small as possible

6. Sell your trained neural net to a startup.

The Whole Process

Goal: Understand a, perhaps
poorly defined, function F.

1. Start with a set of data points:
(xi F(xi))

2. Build a neural network A/

3. Compare with output of N:

(xi, Far(xi)

4. Tweak weights w and bias b decreasing

Error = ave|F(x;) — Far(x;)]
5. Continue tweaking w and bias b until error is
as small as possible
6. Sell your trained neural net to a startup.

7. Buy fancy coffee maker for Math Dept.

A machine learning approach to fast
matrix multiplication

Back to matrix multiplication

Goal: Design a neural network that mimics 2 X 2 matrix multiplication:
F:R* 5 R*
F(A,B)=A-B

Back to matrix multiplication

Goal: Design a neural network that mimics 2 X 2 matrix multiplication:
F:R* 5 R*
F(A,B)=A-B

Step 1: Start with a set of data points:

(%1, F(x1))

This is easy. Generate lots of random 2 X 2 matrices x; = (A;, B;) as well as
their products F(x;) = A; - B;.

Back to matrix multiplication

Goal: Design a neural network that mimics 2 X 2 matrix multiplication:
F:R* 5 R*
F(A,B)=A-B

Step 2: Build a neural network N

Back to matrix multiplication

Goal: Design a neural network that mimics 2 X 2 matrix multiplication:
F:R* 5 R*
F(A,B)=A-B

Step 2: Build a neural network N

Need: A new type of neuron. One whose output is the product of its two inputs.

A new type of neural net!

Neural Net for matrix multiplication

a21b12 + axbxn

aiibi1 + awobn ai b2 + a121722| axibi1 + a221721|

{?"&‘ztz =
el
PS

<
|
]

NN\

Neural Net for matrix multiplication

aiibi + a121b1| ai b2 + a121722| ax1 b1 + a221721| a2 b2 + a221722|

S&
=
I
>

Step 3: Compare with output of N':
(i, P (xi))
Step 4: Tweak weights w and bias b for each edge so that
Error = ave|F(x;) — Far(x;)|

decreases.

Step 5: Continue tweaking w and bias b until error is as small as
possible

Step 3: Compare with output of N':
(i, P (xi))
Step 4: Tweak weights w and bias b for each edge so that
Error = ave|F(x;) — Far(x;)|

decreases.

Step 5: Continue tweaking w and bias b until error is as small as
possible

The Result:

a21b12 + axbxn

a21bi1 + a2 b

ai1bi2 + aobn

aiibi1 + awobn

c
2
-
]
-2
=3
=
=
=
X
"=
e}
(1]
=
P
L
-
(]
c
©
-
=
(]
e
=]
(]
=
c
-
-
(]
o=
=
Q
=

ax1b12 + axnbx

a1b11 + axnbx

ai1bia + annbx

ai1bi1 + aobx

=
.2
e
(1]
-2
=3
=
=]
=
X
=
)
1]
=
1s
=
(]
(7]
(2]
©
-
=)
(2]
I
L
-
(Y]
2
®
~
=]
()]
2

ax1b12 + axnbx |

a1b11 + axnbx

ai1bia + annbx

ai1bi1 + aobx

=
.2
e
(1]
-2
=3
=
=]
=
X
=
)
1]
=
1s
=
(]
(7]
(2]
©
-
=)
(2]
I
L
-
(Y]
2
®
~
=]
()]
2

ax1b12 + axnbx

a1b11 + axnbx

ai1bia + annbx

ai1bi1 + aobx

c
2
=]
1]
=
=3
&
=]
=
X
=
)
(1]
=
-.S
=
()]
(7]
(2]
(]
s
=)
(2]
I
L
-
(]
=
©
b
=
(]
c
©
(]
=
()
-
-
(]
o=
=
8]
=

In one day, our new fancied-up neural
nets replicated:

Theorem (Strassen, 1969)
MultRank(2) <7

In one day, our new fancied-up neural
nets replicated:

Theorem (Strassen, 1969)
MultRank(2) <7

Theorem (Laderman, 1976)
MultRank(3) < 23

In one day, our new fancied-up neural
nets replicated:

Theorem (Strassen, 1969)
MultRank(2) <7

Theorem (Laderman, 1976)
MultRank(3) < 23

Theorem (Waksman, 1970)
MultRank(2,2,3) < 11

In one day, our new fancied-up neural
nets replicated:

Theorem (Strassen, 1969)
MultRank(2) <7

Theorem (Laderman, 1976)
MultRank(3) < 23

Theorem (Waksman, 1970)
MultRank(2,2,3) < 11

Theorem (Hopcroft and Kerr, 1971)
MultRank(2, 3,3) < 15

In one day, our new fancied-up neural How can you tell this actually works?
nets replicated:

Theorem (Strassen, 1969)
MultRank(2) <7

Theorem (Laderman, 1976)
MultRank(3) < 23

Theorem (Waksman, 1970)
MultRank(2,2,3) < 11

Theorem (Hopcroft and Kerr, 1971)
MultRank(2, 3,3) < 15

In one day, our new fancied-up neural How can you tell this actually works?
nets replicated:

Theorem (Strassen, 1969) Plot error vs. training time.
MultRank(2) <7

Theorem (Laderman, 1976)
MultRank(3) < 23

Theorem (Waksman, 1970)
MultRank(2,2,3) < 11

Theorem (Hopcroft and Kerr, 1971)
MultRank(2, 3,3) < 15

In one day, our new fancied-up neural How can you tell this actually works?
nets replicated:

Theorem (Strassen, 1969) Plot error vs. training time.
MultRank(2) <7

0.010
Theorem (Laderman, 1976) o
MultRank(3) < 23

Theorem (Waksman, 1970)
MultRank(2,2,3) < 11

Theorem (Hopcroft and Kerr, 1971) ‘ ; - -
MultRank(2, 3,3) < 15 Figure 3: N =2 Rank =7

In one day, our new fancied-up neural How can you tell this actually works?
nets replicated:

Theorem (Strassen, 1969) Plot error vs. training time.
MultRank(2) <7

0.010
Theorem (Laderman, 1976) o
MultRank(3) < 23

Theorem (Waksman, 1970)
MultRank(2,2,3) < 11

Theorem (Hopcroft and Kerr, 1971) ‘ ; - -
MultRank(2, 3,3) < 15 Figure 3: N = 3 Rank = 23

Failures

0010k \

0.001 |

104l

1 10 100 1000

Figure 4: N = 2 Rank = 6

Failures

—
0.010f
0.001 |
1w
1075k
i 10 100 1000

Figure 4: N = 3 Rank = 22

Failures

3.313-_—"“‘%_7 -
0001}
1w
w5
1 10 100 1000

Figure 4: N = 3 Rank = 21

Failures

0010k
0.001F

104l

1 10 100 1000

Figure 4: N = 2,2, 3 Rank = 10

| was about to call an end to all of
this, but then a recent preprint
mentioned a forgotten result:

Theorem (Stothers, 2011)
MultRank(4) < 48.

| was about to call an end to all of
this, but then a recent preprint
mentioned a forgotten result:
Theorem (Stothers, 2011)
MultRank(4) < 48.

It is the first result that has beat
Strassen’s exponent! Here

MultExp(4) < log, 48 ~ 2.7924 . ..

| was about to call an end to all of
this, but then a recent preprint
mentioned a forgotten result:
Theorem (Stothers, 2011)
MultRank(4) < 48.

It is the first result that has beat
Strassen’s exponent! Here

MultExp(4) < log, 48 ~ 2.7924 . ..

Question: Can a computer fig-
ure this out?

| was about to call an end to all of Yes!
this, but then a recent preprint
mentioned a forgotten result:

Theorem (Stothers, 2011)
MultRank(4) < 48.

0.010

0.001

It is the first result that has beat
Strassen’s exponent! Here

MultExp(4) < log, 48 ~ 2.7924 . .. ' N o roee o
Figure 5: N = 4 Rank = 48

Question: Can a computer fig-
ure this out?

| was about to call an end to all of Yes! Also:
this, but then a recent preprint
mentioned a forgotten result:

Theorem (Stothers, 2011)
MultRank(4) < 48.

0.010

0.001

It is the first result that has beat
Strassen’s exponent! Here

1 10 100 1000 10t

MultExp(4) < log, 48 ~ 2.7924 . ..
Figure 5: N = 4 Rank = 47

Question: Can a computer fig-
ure this out?

| was about to call an end to all of Yes! Also:
this, but then a recent preprint
mentioned a forgotten result:

Theorem (Stothers, 2011)
MultRank(4) < 48.

0.010

0.001

It is the first result that has beat
Strassen’s exponent! Here

1 10 100 1000

MultExp(4) < log, 48 ~ 2.7924 . ..
Figure 5: N = 4 Rank = 46

Question: Can a computer fig-
ure this out?

| was about to call an end to all of Yes! Also:
this, but then a recent preprint
mentioned a forgotten result:

Theorem (Stothers, 2011)
MultRank(4) < 48.

0.010

0.001

It is the first result that has beat
Strassen’s exponent! Here

1 10 100 1000

MultExp(4) < log, 48 ~ 2.7924 . ..
Figure 5: N = 4 Rank = 45

Question: Can a computer fig-
ure this out?

| was about to call an end to all of
this, but then a recent preprint
mentioned a forgotten result:

Theorem (Stothers, 2011)
MultRank(4) < 48.

It is the first result that has beat
Strassen’s exponent! Here

MultExp(4) < log, 48 ~ 2.7924 . ..

Question: Can a computer fig-
ure this out?

OK, too much:

0.010 \—

0.001

1 10 100 1000

Figure 5: N = 4 Rank = 33

It looks like:

y

Conjecture: One can multiply 4 X 4 matrices with fewer than 48
scalar multiplications. In fact, is seems that

MultRank(4) < 45.

Asymptotically, this would give MultExp(4) < log, 45 = 2.7459. . ..

It looks like:

')

Conjecture: One can multiply 4 X 4 matrices with fewer than 48
scalar multiplications. In fact, is seems that

MultRank(4) < 45.

Asymptotically, this would give MultExp(4) < log, 45 = 2.7459. . ..

Note this is only a conjecture. My neural networks were only approximations. What
remains:
1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights
equal £1.

It looks like:

e)

Conjecture: One can multiply 4 X 4 matrices with fewer than 48
scalar multiplications. In fact, is seems that

MultRank(4) < 45.

Asymptotically, this would give MultExp(4) < log, 45 = 2.7459. . ..

Note this is only a conjecture. My neural networks were only approximations. What
remains:
1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights
equal £1.

Conjecture:
lim MultExp(N) = 2
N— o0

It looks like:

e)

Conjecture: One can multiply 4 X 4 matrices with fewer than 48
scalar multiplications. In fact, is seems that

MultRank(4) < 45.

Asymptotically, this would give MultExp(4) < log, 45 = 2.7459. . ..

Note this is only a conjecture. My neural networks were only approximations. What
remains:
1. Find an exact version of this algorithm.

2. Find an equivalent sparse neural net. Preferably one whose non-zero weights
equal £1.

Conjecture:
lim MultExp(N) = 2
N— o0

Currently, it is known limy_, o MultExp(N) < 2.3728... (Josh Alman and Virginia
Williams, 2021).

Update

© DeepMind
Discovering_ novel algorithms with AlphaTensor

This sheds light on a 50-year-old open question in mathematics about finding the
fastest way to multiply two matrices.

\
\

AV

3 weeks ago

NS New Scientist
DeepMind Al finds new way to multiply numbers and speed
up ...

Matrix multiplication — where two grids of numbers are multiplied together ... But
DeepMind's Al has now discovered a faster technique that...

3 weeks ago

° Ars Technica

DeepMind breaks 50-year math record using Al; new record
falls a week later

Last week, DeepMind announced it discovered a more efficient way to perform matrix
multiplication, conquering a 50-year-old record.

2 weeks ago

Nature announced in October, 2022 that:

Theorem (FBHHRBNRSSSHK)
MultRank(4) < 47* and MultRank(5) < 96*

Nature announced in October, 2022 that:

Theorem (FBHHRBNRSSSHK)
MultRank(4) < 47* and MultRank(5) < 96*

It made me feel better that to discover this results, this team used 64 state-of-the-art
TPU cores, trained for 600,000 iterations: a non-academic battery of computational
resources that cost somewhere between $10,000 and $100,000 to run.

* for 0,1-matrices.

Update

Figure 6: RL for AlphaTensor

(

o}
VAV Acting
Change of basis
Played
T \ p game
), v, wity (U, v@, wt) v, wiy
Updated g v
g Learning
Policy head
wv,w —— Played games
\ A buffer
-
Sample
-— random state
Value head

Training labels Neural network Network input

S

Pre-generated
synthetic
demonstrations

A few days later...

THE FBHHRBNRSSSHK-ALGORITHM FOR MULTIPLICATION IN Z3*® IS STILL
NOT THE END OF THE STORY

MANUEL KAUERS* AND JAKOB MOOSBAUER

ABSTRACT. In response to a recent Nature article which announced an algorithm for multiplying 5 x 5-
matrices over Zs with only 96 multiplications, two fewer than the previous record, we present an algo-
rithm that does the job with only 95 multiplications.

1. INTRODUCTION

Ever since Strassen [8] discovered that 2 x 2-matrices can be multiplied with only 7 multiplications in
the coefficient domain, there is a mystery around the complexity of matrix multiplication. For asymptot-
ically large n, the best we know at the moment is a multiplication algorithm that requires O(n>3728596)
operations [1], slightly improving upon the previous record O(n?3728639) [5]. For n = 3, it is known
that 23 multiplications suffice in a non-commutative setting [4]. For n = 4, we can solve the problem
with 49 multiplications by applying Strassen’s algorithm recursively. In a recent article that recei
considerable media attention, Fawzi et al. [2] used a machine learning approach to find a multiplication

crhema with A7 munltinlicatiane annlicahle ta caaffie,

ved

W Adnmaine of charactorictic 9 TTnder the camea

	Neural networks: a brief introduction
	A machine learning approach to fast matrix multiplication

