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Abstract. We consider two families of equivalence classes in the Weyl groups
of type Bn which are suggested by the study of left cells in unequal parameter
Iwahori-Hecke algebras. Both families are indexed by a non-negative integer r.
It has been shown that the first family coincides with left cells corresponding
to the equal parameter Iwahori-Hecke algebra when r = 0; the equivalence
classes in the second family agree with left cells corresponding to a special
class of choices of unequal parameters when r is sufficiently large. Our main
result shows that the two families of equivalence classes coincide, suggesting
the structure of left cells for remaining choices of the Iwahori-Hecke algebra
parameters.

1. Introduction

Consider a Weyl group W of type Bn, that is, the hyperoctahedral group Hn. We
will need two generalizations of the Robinson-Schensted algorithm. Let SDTr(n)
be the set of standard domino tableaux of size n and rank r. Then for every r,
there is a map

Gr : W → SDTr(n) × SDTr(n)

which is a bijection of W with its image, the set of same-shape pairs of standard
domino tableaux (see [4] and [18]). Subsequently, we will write (Sr(w), Tr(w)) for
the pair Gr(w). If we write SBT (n) for the set of standard bitableaux of size n,
then it is possible to define another algorithm

H : W → SBT (n) × SBT (n).

The image of H is the set of same shape pairs of standard bitableaux, and with
this restriction, the map is again a bijection [17]. When r ≥ n − 1, there is a nat-
ural identification between the sets SDTr(n) and SBT (n), and the corresponding
bijections coincide.

As in [10], a Coxeter group W and a weight function L on W can be used to
partition W into left cells. When W is of type Bn, the weight function can be
identified with a positive scalar s, and the description of the corresponding left
cells is known when s = 1, i.e. the equal parameter case [6], when s = 1

2
and

s = 3
2

[2] and [8], and when s > n − 1 [1]. We examine two families of equivalence
classes on W suggested by the above results, in an effort to interpolate them for
intermediate integer values of s.

We define the first equivalence relation on W by letting w ∼r y iff the right
tableaux in the image of Gr, Tr(w) and Tr(y), are related by moving through
a set of open cycles. The second equivalence relation is defined using the right
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tableaux obtained from both Gr and Gr+1. Let w !
′
r y iff either Tr(w) = Tr(y)

or Tr+1(w) = Tr+1(y) and take the equivalence relation !r to be its transitive
closure. It is easy to see that for sufficiently large r, the two relations are the same.
When r ≥ n − 1, the set of open cycles defining ∼r is necessarily empty, implying
w ∼r y iff Tr(w) = Tr(y), and further, that w ∼r y iff w !r y. But even more is
true.

Theorem 3.6 Fix a non-negative integer r. For elements w, y ∈ W, we have

w ∼r y iff w !r y.

Both families of equivalence classes are derived from results on left cells of un-
equal parameter Iwahori-Hecke algebras for certain values of the parameter s. The
relation ∼0, as well as the notion of open cycles, was introduced by D. Garfinkle
[4] and used to describe the left cells in the equal parameter case, i.e. when the
scalar s = 1. For all values of r ≥ n − 1, the equivalence classes of !r in W
are the same, and correspond to the left cells in the unequal parameter case when
s > n − 1 (see [1]). This result of Bonnafé and Iancu originally described the left
cells using right bitableaux of H , but it is easy to reconcile with this formulation
by first, recalling the relationship between H and Gr for large r and second, noting
that Tr(w) = Tr(y) iff Tr+1(w) = Tr+1(y) for these values of r.

Since ∼0 captures the left cell structure of W when s = 1 and !r describes the
left cells when r = s−1 > n−1, the above result can be thought of as interpolating
these results and suggests that ∼r and !r can be used to describe the left cell
structure for intermediate integral values of s as well. There is one more piece of
evidence in support of this.

Bonnafé, Geck, Iancu, and Lam have conjectured that when s is non-integral,
the left cells are determined by the right domino tableaux for appropriate values
of r [2]. Lusztig’s conjecture [10](22.29) as well as the propositions [10](22.24)
and [10](22.25) then suggest that the common refinement !s−1 of these cells
describes the left cell structure for integral values of s. The main result of this
paper shows that this statement can be rephrased using the somewhat simpler
equivalence relations ∼s−1, and reconciles the conjecture with the original result of
Garfinkle, Barbasch and Vogan when s = 1.

Some comments concerning the geometrical considerations related to cells in
this context are appropriate. First of all, according to Kazhdan-Lusztig theory,
one would like to attach to each left cell a distinguished Weyl group representation
together with a finite group. In the equal parameter case, this Weyl group repre-
sentation is special in the sense of Lusztig and the finite group is the component
group of the centralizer of an associated nilpotent orbit. In the asymptotic case, all
cells are irreducible and one can take the corresponding finite groups to be trivial.

For the conjectured left cells in the intermediate cases, a choice of a distinguished
Weyl group representation, or in other words, a choice of a distinguished partition
among the shapes of tableaux of elements in the conjectured two-sided cell (see
[2](Conjecture D)), is not clear. In the equal parameter case, the special repre-
sentation attached to a left cell C corresponds to a partition which appears as a
tableaux shape in all of the left cells contained in the two-sided cell of C. Unfortu-
nately, such a partition need not exist in the unequal parameter case. For instance,
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when r = 2, no single partition appears among the tableaux shapes in every conjec-
tural left cell contained in the conjectural two-sided cell defined from the partition
(4, 32, 1).

It is possible, however, to attach a finite group to each conjectured left cell C
in a manner reminiscent of the equal parameter case. The right tableaux of the
involutions C ∩ C−1 are all related by moving through a subset of non-core open
cycles. Hence C ∩ C−1 can be endowed with the structure of an elementary abelian
group of order 2c, where c is the number of non-core open cycles in the right
tableaux of elements of C. In the equal parameter case, McGovern has described
the relationship of C ∩ C−1 to a quotient of the component group mentioned above
[11].

Secondly, the map G0, which classifies cells in the equal parameter case, is re-
lated to a more geometric Robinson-Schensted-type algorithm described in [12] and
[15] which classifies orbital varieties in nilpotent orbits. The relationship between
them is studied in [13], establishing a bijection between cells and the orbital va-
rieties contained in special nilpotent orbits that is well-behaved with respect to a
certain partial order. It would be interesting to investigate whether a link exists
between Gr for r 6= 0 and this geometric algorithm; however, because partitions
of arbitrary rank do not naturally correspond to nilpotent orbits, the existence of
such a relationship is not obvious.

Finally, Gordon and Martino have recently linked the combinatorics of cells in
the unequal parameter case with the geometry of the Calogero-Moser space in [7].
There, the nilpotent points of Calogero-Moser space are shown to correspond to
the combinatorially-defined conjectural two-sided cells.

2. Preliminaries

2.1. Domino Tableaux. A Young diagram D is a finite left-justified array of
squares arranged with non-increasing row lengths. A square in row i and column
j of the diagram will be denoted sij so that s11 is the uppermost left square in the
Young diagram below:

By ∂(D) of D, we will denote the set of squares sij of D such that either si,j+1

or si+1,j does not lie in D. We will also write ρ(D) for the set of squares si,j+1 and
si+1,j that do not lie in D but sij ∈ ∂(D).

Let r ∈ N and λ be a partition of a positive integer m; also write Nn =
{1, 2, . . . , , n}. A standard domino tableau of rank r and shape λ is a Young di-
agram of shape λ whose squares are labeled by elements of Nn ∪ {0} in such a way
that the integer 0 labels the square sij iff i + j < r + 2, each element of Nn labels
exactly two adjacent squares, and all labels increase weakly along both rows and
columns. We will write SDTr(λ) for the family of all domino tableaux of rank r
and shape λ and SDTr(n) for the family of all domino tableaux of rank r which
contain exactly n dominos. The set of squares labeled by 0 will be called the core
of the tableau. We will write δ(T ) for the set of sij which satisfy i + j = r + 2, and
extend the notions of ∂(D) and ρ(D) to tableaux, writing ∂(T ) and ρ(T ).
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2.2. Generalized Robinson-Schensted Algorithms. We will consider the ele-
ments of the hyperoctahedral group Hn as subsets w of Nn × Nn × {±1} with the
property that the projections onto the first and second components of w are always
bijections onto Nn. The element w will be written as {(w1, 1, ǫ1), . . . , (wn, n, ǫn)}
and corresponds to the signed permutation (ǫ1w1, ǫ2w2, . . . , ǫnwn).

We briefly describe the Robinson-Schensted bijections Gr : Hn → SDTr(n) ×
SDTr(n), following [4] and [18]. The algorithm is based on a map α which inserts
a domino with label i into a domino tableau given an element (i, j, ǫ) of w ∈ Hn.
This insertion map is similar to the usual Robinson-Schensted insertion map and
is precisely defined in [4](1.2.5). To construct the left tableau, start with Sr(0),
the only tableau in SDTr(0). Define Sr(1) = α((w1, 1, ǫ1), Sr(0)) and continue
inductively by letting

Sr(k + 1) = α
(

(wk+1, k + 1, ǫk+1), Sr(k)
)

.

The left domino tableau Sr(n) will be standard and of rank r. The right tableau is
defined to track the shape of the left tableau. Begin by forming a domino tableau
Tr(1) by adding a domino with label 1 to Sr(0) in such a way that Sr(1) and
Tr(1) have the same shape. Continue adding dominos by requiring that at each
step Tr(k) lie in SDTr(k) and have the same shape as Sr(k). Again, the domino
tableau Tr(n) will be standard and of rank r. We define the Robinson-Schensted
map Gr(w) = (Sr(n), Tr(n)) and will write Sr(w) = Sr(n) and Tr(w) = Tr(n) for
the left and right tableaux.

When r = 0 or 1, the Gr are precisely Garfinkle’s algorithms; for r > 1 they are
natural extensions to larger-rank tableaux. In all cases, Gr defines a bijection from
Hn to pairs of same-shape tableaux in SDTr(n) (see [18]). According to [18], (4.2),
Gr(w

−1) = (T, S) whenever Gr(w) = (S, T ). In particular, w is an involution iff
Gr(w) = (S, S) for some standard domino tableau S.

There is a natural description of the relationship between the bijections Gr for
differing r which we recount at the end of the next section. We also point out that
for r sufficiently large, Gr recovers the algorithm H mentioned in the introduction
(see [17] and [14]).

2.3. Cycles. We now review the notion of a cycle in a domino tableau. It appears
in a number of references. See for instance [4] and [19] as well as [3] and [20].

For T ∈ SDTr(n) we will call the square sij fixed if i + j has the opposite parity
as r, otherwise, we’ll call it variable. If sij is variable and i is odd, we will say sij

is of type X; if i is even, we will say sij is of type W. We will write D(k, T ) for
the domino labeled by the positive integer k in T and supp D(k, T ) will denote its
underlying squares. Write label sij for the label of the square sij in T . We extend
this notion slightly by letting label sij = 0 if either i or j is less than or equal to
zero, and label sij = ∞ if i and j are positive but sij is not a square in T .

Definition 2.1. Suppose that supp D(k, T ) = {sij , si+1,j} or {si,j−1, sij} and the
square sij is fixed. Define D′(k) to be a domino labeled by the integer k with
supp D′(k, T ) equal to {sij, si−1,j} if k < label si−1,j+1 and {sij , si,j+1} if k >
label si−1,j+1. Alternately, suppose that supp D(k, T ) = {sij , si−1,j} or {si,j+1, sij}
and the square sij is fixed. Define supp D′(k, T ) to be {sij , si,j−1} if k < label si+1,j−1

and {sij , si+1,j} if k > label si+1,j−1.

Definition 2.2. The cycle c = c(k, T ) through k in a standard domino tableau T is
a union of labels of dominos in T defined by the condition that l ∈ c if either l = k,
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or either supp D(l, T )∩ supp D′(m, T ) 6= ∅ or supp D′(l, T ) ∩ supp D(m, T ) 6= ∅ for
some D(m, T ) ∈ c.

We will often refer to the set of dominos with labels in a cycle c as the cycle c
itself. For a standard domino tableau T of rank r and a cycle c in T , define a domino
tableau MT (T, c) by replacing every domino D(l, T ) ∈ c by the corresponding
domino D′(l, T ).

The tableau MT (T, c) is standard, and in general, the shape of MT (T, c) will
either equal the shape of T , or one square will be removed (or added to the core)
and one will be added [4], (1.5.27). A cycle c is called closed in the former case
and open in the latter. We will write OC(T ) for the set of open cycles in T . For
c ∈ OC(T ), we will write Sb(c) for the square that is either removed from the shape
of T or added to the core of T by moving through c. Similarly, we will write Sf (c)
for the square that is added to the shape of T . Note that Sb(c) and Sf (c) are always
variable squares.

Definition 2.3. A variable square sij in ∂(T )∪ρ(T ) with the property that neither
si,j+1 nor si+1,j lie in T will be called a hole if it is of type W and a corner if it is
of type X .

We will write ∆(T ) for the cycles through δ(T ). The squares Sb(c) and Sf (c)
are of the same type if c ∈ ∆(T ). However, for a cycle c /∈ ∆(T ), one of Sb(c) and
Sf (c) must be a corner and the other a hole. If the row number of Sb(c) is smaller
than the row number of Sf (c), we will call c a down cycle; otherwise, we will say c
is an up cycle.

Let U be a set of cycles in T . According to [4], (1.5.29), the order in which one
moves through a set of cycles does not matter, allowing us to unambiguously write
MT (T, U) for the tableau obtained by moving-through all of the cycles in the set
U . Moving through a cycle in a pair of same-shape tableaux is a slightly more
delicate operation and requires the following definition (see [5](2.3.1)).

Definition 2.4. Consider (S, T ) a pair of same-shape domino tableaux, k a label
in S, and c the cycle in S through k. The extended cycle c̃ of k in S relative to T
is a union of cycles in S which contains c. Further, the union of two cycles c1 ∪ c2

lies in c̃ if either is contained in c̃ and, for some cycle d in T , Sb(d) coincides with a
square of c1 and Sf (d) coincides with a square of MT (S, c2). The symmetric notion
of an extended cycle in T relative to S is defined in the natural way.

Let c̃ be an extended cycle in T relative to S. According to the definition, it
is possible to write c̃ = c1 ∪ . . . ∪ cm and find cycles d1, . . . , dm in S such that
Sb(ci) = Sb(di) for all i, Sf(dm) = Sf (c1), and Sf (di) = Sf (ci+1) for 1 ≤ i < m.

The union d̃ = d1∪· · ·∪dm is an extended cycle in S relative to T called the extended
cycle corresponding to c̃. Symmetrically, c̃ is the extended cycle corresponding to
d̃.

We define a moving through operation for a pair of same-shape domino tableaux.
If we let b be the ordered pair (c̃, d̃) of extended cycles in (S, T ) that correspond to
each other, then we define

MT ((S, T ), b) = (MT (S, c̃), MT (T, d̃)).

As desired, this operation produces another pair of same-shape domino tableaux
([5], (2.3.1)).
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Finally, we are ready to describe the relationship between the Robinson-Schensted
maps Gr introduced in the previous section. Recall that the set δ(T ) consists of
the squares sij of T adjacent to the core of T , and ∆(T ) is the set of open cycles
in T that pass through the squares in δ(T ). Let γ(S) be the extended cycles in S
relative to T that pass through δ(S); define γ(T ) similarly. If we write γ for the
pair (γ(S), γ(T )), then

MMT ((S, T )) ≡ MT ((S, T ), γ)

is the minimal moving through map that clears all of the squares in δ(S) and δ(T )
simultaneously.

Theorem 2.5. [16] Consider an element w ∈ Hn. The Robinson-Schensted maps

Gr and Gr+1 for rank r and r + 1 domino tableaux are related by

Gr+1(w) = MMT (Gr(w)).

2.4. Cycle Structure. Let us define a few objects that will be useful in describing
the cycle structure of a domino tableau T .

Definition 2.6. Let sij and skl lie in the set of corners and holes of T . We will
say that smn is between sij and skl iff m is between i and k and n is between j and
l (where m is between i and k iff i ≤ m ≤ k or i ≥ m ≥ k). We will also say sij is
above skl if i < k.

We will say that a cycle d ∈ ∆(T ) is adjacent to a cycle c ∈ OC∗(T ) = OC(T )r

∆(T ) if there is no cycle d′ ∈ ∆(T ) such that Sf (d′) is between Sf (d) and Sf (c).
The set of non-core open cycles OC∗(T ) has a partial order defined by c′ � c′′ iff

Sf (c′′) is between Sb(c
′) and Sf (c′). Let µ(T ) = {c1, c2, . . .} be the set of maximal

elements in this poset. For every c ∈ µ(T ), we will write c� for the set of cycles
smaller than or equal to c. We also form a rooted tree τ(c) whose vertices correspond
to cycles c′ ∈ c�, each labeled by 0 if c′ is an up cycle and 1 if it is a down cycle.
Edges in the tree τ(c) are defined in the natural way from the Hasse diagram of
the poset, and for cycles of the same depth we place c′ to the left of c′′ if Sb(c

′)
is above Sb(c

′′). Finally, τ(T ) will denote the ordered set of trees (τ(c1), τ(c2), . . .)
where Sb(ci) is above Sb(ci+1).

Example 2.7. Consider the domino tableau

T =

0 0 1 2 3

0 6 7 8

4 9
11 12

1516
18

5 10

17

1314

It has three open cycles in the set OC(T )r∆(T ): c1 = {9, 10, 11, 12, 14}, c2 = {17},
and c3 = {18}. The set µ(T ) contains only the cycle c1 and τ(T ) = (τ(c1)) where:

τ(c1) =
0

1 0

We will use τ(T ) to keep track of the relative positions of the non-core open
cycles in T . We will also need to keep track of the exact locations of the beginning
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and final squares of all the open cycles in T , for which we use the notion of a cycle
structure set.

Definition 2.8. For a standard domino tableau T , we define the cycle structure set
of T as the set of ordered pairs cs(T ) consisting of the beginning and final squares
of every cycle in T . That is:

cs(T ) = {(Sb(c), Sf (c)) | c ∈ OC(T )}.

In general, the open cycles of a standard domino tableau can have fairly com-
plicated shapes. However, for any T , it is always possible to find another standard
domino tableau with hook-shaped open cycles and the same cycle structure set.

Definition 2.9. We will say that an open cycle c in T is hook-shaped iff the set of
its underlying squares is entirely contained in the union of one row and one column
of T .

Proposition 2.10. For every standard domino tableau T , there exists another

standard domino tableau Γ(T ) of the same shape such that:

• cs(Γ(T )) = cs(T )
• every c ∈ OC(Γ(T )) is hook-shaped.

Proof. We first show that an appropriate domino tiling d(T ) of shape(T ) is possible
and then show that its dominos can be labeled as a standard tableau Γ(T ) with
the required cycle structure.

We begin by assigning a hook in shape(T ) to every c ∈ OC(T ). Write Sb(c) = sij

and Sf (c) = skl. For c in ∆(T ), k − i and l − j are both even, implying that the
hook with ends sij and sk,l−1 and corner skj as well as the hook with ends sij and
sk−1,l and corner sil can both be tiled by dominos. If the domino in the cycle c
of T adjacent to the core is vertical, choose the former hook, otherwise, choose the
latter. For c in OC∗(T ), k− i and l− j are both odd, again implying that the hook
with ends sij and sk,l−1 and corner skj as well as the hook with ends sij and sk−1,l

and corner sil can be tiled by dominos. If c is a down cycle, choose the former
hook, otherwise, choose the latter. We will write h(c) for the set of dominos in the
hook constructed in this manner starting with a cycle c ∈ OC(T ). It is not hard to
see that it is possible to tile the above hook-shapes with dominos for all cycles in
OC(T ) simultaneously.

Next, we note that the remaining squares of shape(T ) can be tiled with 2-by-2
shapes. To be more explicit, we make the following definitions for the hooks in
shape(T ) constructed above. Two such hooks will be said to have adjacent vertical
components if for every pair of squares of the form {sij, sil} among the two hooks,
there is no other hook containing a square of the form sim with m between j and l.
A vertical component containing a square sij with a property that no other hook
contains a square of the form sil with l greater than j will be said to be adjacent
to the boundary of shape(T ). We also make the analogous definitions for the
horizontal components of the above hooks. Since adjacent corners and holes in T
have different types, adjacent vertical components of two hooks must be separated
by an even number of columns, and vertical components adjacent to the boundary
of shape(T ) must be separated from it by an even number of columns. Similarly,
adjacent horizontal components of two hooks must be separated by an even number
of rows and horizontal components adjacent to the boundary of shape(T ) must be
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separated from it by an even number of rows. This observation permits us to tile
the remaining squares of shape(T ) with 2-by-2 shapes.

Using the above observations, define a domino tiling d(T ) of shape(T ) as the set
of h(c) for all c ∈ OC(T ) together with a tiling of the remaining 2-by-2 shapes with
pairs of adjacent vertical dominos.

Next, we show that d(T ) can be numbered to create a standard domino tableau.
To simplify the description, we first make the following construction.

Definition 2.11. Let e be a domino which intersects ∂(D) of a domino-tiled skew
diagram D of shape λ r µ. We construct a rooted tree t(e) with vertices corre-
sponding to a certain subset v(e) of the dominos in the tiling of D. The domino e
will correspond to the root of the tree. The rest of t(e) is constructed recursively.

So suppose that f is a domino of D which corresponds to the vertex v. Whenever
f is either a horizontal domino containing the corner sij of a hook h(c) with c ∈
OC∗(T ), or a domino in a vertical portion of a hook h(c) for c ∈ OC(T ) with

bottom square sij fixed, we define f̃ as the domino containing si+1,j−1. We say
that one domino is adjacent to another if two of their underlying squares share a
side. The set of children of v in t(e) consists of all the dominos adjacent to the

left side of f together with the domino f̃ whenever it is defined. If there is only
one child of f , place it as a right child of f in t(e). Otherwise, order the children
left to right with the top-most domino as the left child. This process then can be
continued until the leaves of t(e) correspond to dominos adjacent to the boundary
of µ.

We are now ready to describe how to number the dominos of d(T ). Consider
the domino e at the top edge of ∂(T ). The vertices of t(e) can be numbered with
the integers {1, 2, . . . , |t(e)|} according to a postfix order traversal, and the labels
of t(e) can be transferred to d(T ). The entire process can then be repeated for the
skew diagram d(T ) \ v(e) with labels starting at |t(e)|+ 1. Iterating this procedure
until d(T ) is exhausted yields a numbered domino tiling of d(T ). It is not difficult
to verify that it is in fact a standard domino tableau which we call Γ(T ).

Finally, we check that Γ(T ) has the desired cycles. First, we show that all
dominos of Γ(T ) not contained in a hook h(c) for some c ∈ OC(T ) lie in a closed
cycle of size 2 in Γ(T ). Consider the dominos of Ω = Γ(T ) r {h(c) | c ∈ OC(T )}.
Choose a domino e1 ∈ Ω whose top and left edges are not adjacent to any other
members of Ω. Its top square sij is necessarily fixed. Further, the label of si−1,j+1

is necessarily smaller than the label of sij since it either lies outside of shape(T ), or
the domino containing it corresponds to either a vertex on a prior branch of its tree,
or even a tree that has been labeled previously. Hence MT (e1, Γ(T )) consists of the
squares {sij , si,j+1}. The domino e2 = {si,j+1, si+1,j+1} of Γ(T ) has fixed square
si+1,j+1. Its label is necessarily smaller then the label of si+2,j , since the latter
square either lies outside the Young diagram underlying shape(T ), or the domino
containing it corresponds to either a vertex on a later branch of its tree, or even
a tree labeled later. Hence MT (e2, Γ(T )) consists of the squares {si+1,j , si+1,j+1}
and {e1, e2} is a closed cycle in Γ(T ). This argument can be repeated again with
Ω replaced with Ω r {e1, e2} until Ω is exhausted.

Now, consider a hook h(c) corresponding to c ∈ OC(T ). When labeled, it
constitutes an open cycle of Γ(T ); the fact that if e is a domino in h(c), then the
squares of MT (e, T ) again lie in h(c) follows directly from our method of numbering
d(T ). Furthermore, if c ∈ OC(T ), then Sb(h(c)) = sij = Sb(c) and Sf (h(c)) =
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skl = Sf (c). Since the h(c) are the only open cycles of Γ(T ), we can conclude that
cs(Γ(T )) = cs(T ). �

Example 2.12. We provide an example of the method of labeling the dominos in a
domino diagram to form a standard domino tableau used in the above construction.
Consider the domino diagram E of shape {5, 5, 4, 3} \ {2, 1}. The domino e is at
the top of its boundary:

E =

e

The dominos in E can be represented in the rooted tree t(e) which can be numbered
according to a postfix traversal order as below.

t(E) =

e 7

1 6

2 5

3 4

Finally, this numbering of the vertices of the above tree yields the standard domino
tableau T :

T =

1
7

2
6

3
5

4

Note that in the proof of the previous proposition, the only data required from
T to construct Γ(T ) was its shape and the cycle structure set cs(T ). Thus given a
shape λ of a domino tableau and a set cs of pairs of beginning and final squares,
we will write Γ(λ, cs) for the standard domino tableau constructed via the above
process.

3. Equivalence Relations on W

We define two equivalence relations on domino tableaux in SDTr(n). Both can
be used to define equivalence classes in W of type Bn by using the generalized
Robinson-Schensted algorithms Gr. The main result is that the equivalence classes
thus defined are in fact the same.

Definition 3.1. Consider T, T ′ ∈ SDTr(n). We say T ∼r T ′ iff there is a subset
of non-core open cycles U ⊂ OC∗(T ′) such that T = MT (T ′, U).

It is not difficult to see that ∼r defines an equivalence relation on SDTr(n). We
will use it to define an equivalence relation on W . First, note that elements of an
∼r-equivalence class of T correspond to {0, 1}-labelings of the vertices of the trees
underlying τ(T ). Such a labeling determines a unique standard domino tableau T ′

in the equivalence class of T .

Definition 3.2. Consider w, y ∈ W and let w ∼r y iff Tr(w) ∼r Tr(y).

Hence the equivalence relation ∼r on W is completely determined by an equiv-
alence relation on right tableaux.

Definition 3.3. Consider T, T ′ ∈ SDTr(n). We will say T !
′
r T ′ iff there exist

S, S′ ∈ SDTr(n) such that MMT (S, T ) and MMT (S′, T ′) have the same right
tableau. We will let !r be its transitive closure.
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Definition 3.4. Consider w, y ∈ W and define a relation w !
′
r y iff Tr(w) = Tr(y)

or Tr+1(w) = Tr+1(y). Let !r be its transitive closure.

Both of the relations denoted by !r are in fact equivalence relations. Again,
the equivalence relation !r on W can be completely expressed as an equivalence
relation on right tableaux, mirroring Definition 3.2.

Proposition 3.5. Consider w, y ∈ W, then w !r y iff Tr(w) !r Tr(y).

Proof. Let’s simplify the notation and write ∼ for ∼r and ! for !r. Note that
w !

′ y means that either Tr(w) = Tr(y), in which case Tr(w) !
′ Tr(y), or that

Tr+1(w) = Tr+1(y). In the latter case, the description of the map MMT implies
that MMT (Gr(w)) MMT (Gr(y)) have the same right tableaux and Tr(w) !

′

Tr(y). Hence the relation ! on W implies the relation ! on tableaux.
Conversely, suppose that Tr(w) !

′ Tr(y). Consider tableaux S and S′ such
that MMT (S, Tr(w)) and MMT (S′, Tr(y) have the same right tableaux. If we let
w′ = G−1

r (S, Tr(w)) and y′ = G−1
r (S′, Tr(y)), then w′

!
′ y′ since Gr+1(w

′) =
MMT (S, Tr(w)) and Gr+1(y

′) = MMT (S′, Tr(y)). Finally, Tr(w) = Tr(w
′) and

Tr(y) = Tr(y
′), implying w !

′ w′
!

′ y′
!

′ y. Thus, the equivalence relation
! on tableaux implies the relation ! on W . �

Our main result states that ∼r and !r in fact define the same equivalence
classes in W .

Theorem 3.6. Consider w, y ∈ W , then w ∼r y iff w !r y.

Proof. Again, let’s write ∼ for ∼r and ! for !r. The fact that w ! y implies
w ∼ y is a consequence of the relationship between the Robinson-Schensted maps
Gr and Gr+1 described in Theorem 2.5.

If w !
′ y, then either Tr(w) = Tr(y) or Tr+1(w) = Tr+1(y). In the former case,

we automatically have w ∼ y. In the latter case, Tr+1(w) = Tr+1(y) and Theorem
2.5 implies that MMT (Gr(w)) and MMT (Gr(y)) have the same right tableaux.
According to the definition of the MMT map,

Tr+1(w) = MT (Tr(w), ∆(Tr(w)) ∪ X)

for a subset of non-core open cycles X ⊂ OC∗(Tr(w)) and

Tr+1(y) = MT (Tr(y), ∆(Tr(y)) ∪ Y )

for a subset of non-core open cycles Y ⊂ OC∗(Tr(y)). Since the moving-through
operation can be performed on disjoint sets of cycles independently, MT (Tr(w), X)
must equal MT (Tr(y), Y ) . In particular, this forces Tr(w) = MT (Tr(y), U) for
some subset U ⊂ OC∗(Tr(y)), implying Tr(w) ∼ Tr(y) and w ∼ y.

Our proof that w ∼ y implies w ! y requires the following lemma, whose proof
we relate in the following section.

Lemma 3.7. Suppose that T ′′ = MT (T ′, U) for some subset U ⊂ OC∗(T ′), and

that the labels of τ(T ′) and τ(T ′′) disagree only on one tree. Then T ′
! T ′′.

Let T = Tr(w) and T ′ = Tr(y). By definition, w ∼ y implies T ′ = MT (T, U)
for some subset U of non-core open cycles of T . Let’s suppose that the positions
of the cycles of these tableaux are given by the trees τ(T ) = (τ1, τ2, . . . , τm) and
τ(T ′) = (τ ′

1, τ
′
2, . . . , τ

′
m). Using the note following Definition 3.1, construct domino
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tableaux Ti with τ(Ti) = (τ1, τ2, . . . , τi, τ
′
i+1, . . . τ

′
m). According to Lemma 3.7, we

have constructed a sequence of tableaux {Ti} satisfying

T ′ = T0 ! T1 ! T2 ! . . . ! Tm = T.

The characterization of ! given in Proposition 3.5 implies w ! y, as desired. �

4. Main Lemma

This section details the proof of Lemma 3.7. We retain the notation used therein
and begin with a definition and a result on {0, 1}-labeled trees.

Definition 4.1. Suppose τ ′ and τ ′′ are {0,1}-labeled trees as in Section 2.4 which
share the same underlying unlabeled embedded rooted tree ς. For ǫ ∈ {0, 1}, we
say τ ′

!
′
ǫ τ ′′ if there is a path κ in ς satisfying

(1) κ contains the root of ς
(2) labels of τ ′ and τ ′′ agree on the vertices of ς r κ,
(3) except for the vertex of greatest depth in κ, the labels of vertices in κ in τ ′

and τ ′′ agree, alternate, and begin with ǫ at the root.

We will write !ǫ for the transitive closure of !
′
ǫ.

We note that according to the above, a path κ can contain just the root of ς.
The next result shows that for each ς, there is only one equivalence class of {0, 1}-
labeled trees. While this means that the relation !ǫ is trivial, we’ve introduced
it as we will need to know the sequence of !

′
ǫ that accomplishes this.

Proposition 4.2. Two {0, 1}-labeled trees which share the same underlying rooted

tree are !ǫ-equivalent.

Proof. Consider two {0, 1}-labeled trees τ ′ and τ ′′ which share the same underlying
unlabeled rooted tree ς. Let τa be a labeling of the vertices of ς with vertices of
even depth labeled by ǫ and vertices of odd depth labeled by 1 − ǫ. Starting with
the set of vertices of maximal depth m in ς and using the definition of !

′
ǫ, we

can find a sequence of trees which agree with τa on vertices of depth less than m
and are !ǫ-equivalent to the tree whose labels agree with τa on vertices of depth
less than m and vertices of τ ′ on maximal depth vertices. This procedure can be
repeated successively for smaller depths, creating a sequence

τ ′ = τ1 !
′
ǫ τ2 !

′
ǫ . . . !

′
ǫ τl = τa.

The above procedure can be repeated with τ ′ replaced with τ ′′, finally creating the
desired sequence of labeled embedded trees

τ ′ = τ1 !
′
ǫ τ2 !

′
ǫ . . . !

′
ǫ τm = τ ′′.

�

Example 4.3. We exhibit the above procedure for the trees τ ′ and τ ′′ and ǫ = 1.
Here, τa is the third tree in the sequence.

τ ′ =
1

1 1

1 1

!1

1

1 0

1 1

!1

1

0 0

1 1

!1

1

1 0

1 0

= τ ′′
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We are ready to start the proof of the main lemma. Suppose that T ′′ =
MT (T ′, U) for some subset U ⊂ OC∗(T ′), and that the labels of τ(T ′) and τ(T ′′)
disagree only on the (k + 1)-st tree:

τ(T ′) = (τ1, τ2, . . . , τk, τ ′, τk+2, . . .)

τ(T ′′) = (τ1, τ2, . . . , τk, τ ′′, τk+2, . . .)

Write c for the cycle of T ′ and T ′′ that corresponds to the root of both the
trees τ ′ and τ ′′, and choose a cycle d ∈ ∆(T ′) = ∆(T ′′) adjacent to c (see Section
2.4). If Sf (d) is above Sf (c), then take ǫ = 1. Otherwise, let ǫ = 0. The previous
proposition gives τ ′

!ǫ τ ′′ via the sequence

τ ′ = τ1 !
′
ǫ τ2 !

′
ǫ . . . !

′
ǫ τm = τ ′′.

Using the note following Definition 3.1, we can construct a sequence of tableaux
{Ti}m

i=1 from this sequence of labeled embedded trees, each satisfying

τ(Ti) = (τ1, τ2, . . . , τk, τi, τ
k+2, . . .).

Claim 4.1. With ǫ as above, Ti !
′ Ti+1.

Proof. Since τi !
′
ǫ τi+1, we must have Ti+1 = MT (Ti, c̃) for some cycle c̃ � c.

Let c = c1, c2, . . . cl = c̃ be the maximal chain between them in the poset of open
cycles. Except perhaps for c̃, it alternates between up and down cycles in both Ti

and Ti+1 because of the way !
′ is defined. Furthermore, unless l = 1, c1 must be

an up cycle if ǫ = 1 and a down cycle if ǫ = 0. Let B be the cycle structure set of
Ti with pairs of squares that correspond to cycles in τi deleted. Write c0 = d and
for k ≥ 1, let

Ck = (Sb(c0), Sf (c1)) ∪
⋃

1≤j≤k/2

(Sb(c2j), Sf (c2j−2)) ∪
⋃

1≤j<k/2

(Sb(c2j−1), Sf (c2j+1))

and

Dk =

{

B ∪ Ck ∪ (Sb(ck), Sf (ck−1)) if k is odd
B ∪ Ck ∪ (Sb(ck−1), Sf (ck)) if k is even.

When k = 0, let D0 = B. There are two possibilities for the position of cl in Ti.
First assume that c1, c2, . . . , cl alternates between up and down cycles. Following
Proposition 2.10 and especially the comment after it, we can find standard domino
tableaux Si = Γ(shape(Ti),Dl) and S′

i = Γ(shape(Ti+1),Dl−1) satisfying cs(Si) =
Dl and cs(S′

i) = Dl−1. By definition of extended cycles and our choice of ǫ,

ec(d, Ti, Si) = d ∪ c1 ∪ c2 ∪ . . . cl, and

ec(d, Ti+1, S
′
i) = d ∪ c1 ∪ c2 ∪ . . . cl−1.

Hence MMT (Si, Ti) will have right tableau MT (Ti, ∆(Ti) ∪ c1 ∪ c2 ∪ . . . cl) while
MMT (S′

i, Ti+1) will have right tableau MT (Ti+1, ∆(Ti+1)∪c1∪c2∪. . . cl−1). Since
∆(Ti+1) = ∆(Ti) and Ti+1 = MT (Ti, cl), Definition 3.3 implies that Ti !

′ Ti+1,
as desired.

The second possibility for the position of cl in Ti is that both cl−1 and cl are
either up or down cycles. The proof follows as above, but with Si and S′

i defined
to satisfy cs(Si) = Dl−1 and cs(S′

i) = Dl.
�

Armed with the above claim, we have found a sequence of tableaux {Ti}m
i=1 such

that T1 = T ′, Tm = T ′′ and Ti !
′ Ti+1 for all i, verifying the main lemma.



EQUIVALENCE CLASSES IN THE WEYL GROUPS OF TYPE Bn 13

Example 4.4. We conclude with an example which will hopefully clarify the above
procedure. Let

T ′ =

0 1 2

3 4

5 6

7
8

and T ′′ =

0 1 2

3 4

5
6

8

7

so that T ′′ = MT (T ′, U), where U consists of all non-core open cycles of T ′. We
would like to show that T ′

! T ′′, and so we need to construct a sequence of !
′-

equivalent tableaux. Both τ(T ′) and τ(T ′′) contain only one tree, so we are in the
setting of the Lemma 3.7. We first find a sequence of labeled trees which exhibit
τ(T ′) !1 τ(T ′′). The proof of Proposition 4.2 yields the sequence

τ1 =
1

1

!1 τ2 =
1

0

!1 τ3 =
0

0

with τ1 = τ(T ′) and τ3 = τ(T ′′). Using the note after Definition 3.1, these trees
correspond to the sequence T1 = T ′, T2, and T3 = T ′′ of tableaux with

T2 =

0 1 2

3 4

5 6

7 8

.

To show that T1 !
′ T2 !

′ T3, we need to find tableaux S1, S
′
1, S2, and S′

2

which satisfy the equalities MMT (S1, T1) = MMT (S′
1, T2) and MMT (S2, T2) =

MMT (S′
2, T3). This is accomplished in our proof of Claim 4.1 by using Proposition

2.10 to construct tableaux with the required cycle structure:

S1 =

0 1 2

3 4 5 6

7
8

S′
1 =

0 1 2

3 4
5

8

6 7

S2 =

0 1 2

3 4 5 6

7 8

and S′
2 = T ′′. We check that

MMT (S1, T1) = MMT (S′
1, T2) =

0 0 1 2

0 3 4

5
6

8

7

MMT (S2, T2) = MMT (S′
2, T3) =

0 0 1 2

0 3 4

5
6

8

7
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[2] C. Bonnafé, M. Geck, L. Iancu, and T. Lam. On domino insertion and Kazhdan–Lusztig cells
in type Bn, arXiv:math.RT/0609279.
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