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Abstract. Consider a complex classical semi-simple Lie group
along with the set of its nilpotent coadjoint orbits. When the
group is of type A, the set of orbital varieties contained in a given
nilpotent orbit is described a set of standard Young tableaux. We
parameterize both, the orbital varieties and the irreducible com-
ponents of unipotent varieties in the other classical groups by sets
of standard domino tableaux. The main tools are Spaltenstein’s
results on signed domino tableaux together with Garfinkle’s oper-
ations on standard domino tableaux.
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1. Introduction

Let g be a complex semisimple Lie algebra with adjoint group G and

writeOf = G·f for the coadjoint orbit of G through f in g∗. Fix a Borel

subgroup B of G and let F be the flag variety G/B. For a unipotent

element u ∈ G, Fu is the variety of flags in F fixed by the action of u.

The orbit Of has a natural G-invariant symplectic structure and the

Kostant-Kirillov method seeks to attach representations of G to certain

Lagrangian subvarieties of Of (see [6], [9], and [10]). Of particular

importance is the set of orbital varieties, Lagrangian subvarieties of Of

that are fixed by a given Borel subgroup of G.

A result of Spaltenstein identifies the set of orbital varieties for a

given nilpotent orbit with the orbits of a finite group on the irreducible

components of the corresponding unipotent variety [11]. The main

purpose of this paper is to provide new parameterizations of both, the

orbital varieties contained in a given nilpotent orbit, as well as the

irreducible components of the unipotent variety Irr(Fu).

In the case of classical groups, nilpotent coadjoint orbits are classified

by partitions. Because the number of orbital varieties contained in a

given orbit is finite, one expects that both orbital varieties and the

components of the unipotent variety should also admit combinatorial

descriptions. This is most apparent when G is of type A.

Theorem ([12]). Suppose that G = GLn(C) and the nilpotent orbit Of

corresponds to the partition λ of n. Then the orbital varieties contained

in Of as well as the set of components Irr(Fu) are both parameterized

by the family of standard Young tableaux of shape λ.
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In the setting of other classical groups, a method similar to the one

used to obtain the above can also be employed to describe both families

of objects. However, the resulting parametrization by subsets of signed

domino tableaux is somewhat cumbersome (see [12] and [15]). The

following argument suggests a more appealing parameter set.

First we recall that the set of domino partitions indexes the unitary

dual of W , the Weyl group of G. In types Bn and Cn, the elements

of Ŵ are parameterized by ordered pairs (d, f) of partitions such that

|d| + |f | = n [1]. In each case, the parameter set is in bijection with

the set of domino partitions of 2n (type Cn) or 2n + 1 (type Bn).

Write S for this set and λ for a partition lying in S. The dimension

of the representation given by λ is precisely the number of standard

domino tableaux of shape λ. If we choose a unipotent representative

uλ ∈ G in the conjugacy class corresponding to λ, then Springer’s

characterization of the representations Ŵ in the top degree cohomology

of Fu [13] indicates that

#SDT (n) =
∑

λ∈S

dim H top(Fuλ
,C) = #{Irr(Fuλ

) |λ ∈ S}

This suggests that Irr(Fu) should correspond to a set of standard

domino tableaux in a natural way. Indeed, this is the case. The precise

relationship between van Leeuwen’s parameter set for Irr(Fu) [15] and

the set of domino tableaux can be described in terms of Garfinkle’s

notions of cycles and moving-through maps [2]. After defining the

notion of a distinguished cycle for a cluster of dominos, we show that

moving through sets of distinguished cycles of open and closed clusters

in van Leeuwen’s parameter set defines a bijection with the set of all

domino tableaux of a given size.

Theorem 1.1. Suppose that G is a complex classical simple Lie group

not of type A. Then the collection of irreducible components of the

unipotent varieties for G as the unipotent element ranges over all con-

jugacy classes is parameterized by SDT (n), the set of standard domino

tableaux of size n.

The action of the finite group Au on the irreducible components

Irr(Fu) is described in [15]. In the signed domino parametrization, it

acts by changing the signs of open clusters. We exploit this to obtain
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a parametrization of orbital varieties by standard domino tableaux.

This time, moving through the distinguished cycles of just the closed

clusters in van Leeuwen’s parameter set defines the required bijection.

The result is a little simpler to state if we consider nilpotent orbits of

the isometry group of a nondegenerate bilinear form, Gε.

Theorem 1.2. Suppose that G is a complex classical simple Lie group

not of type A and O is the nilpotent orbit of Gε that corresponds to

the partition λ . Then the set of orbital varieties contained in O is

parameterized by the set of standard domino tableaux of shape λ.

Parameterizations of orbital varieties by domino tableaux have been

obtained in [8], by describing equivalence classes in the Weyl group

of G, as well as in [14]. We will address the compatibility of these

parameterizations with the one above in another paper.

In [10], this parametrization of orbital varieties is used to calculate

infinitesimal characters of certain Graham-Vogan representations. The

Graham-Vogan construction of representations associated to a coad-

joint orbit is an extension of the method of polarizing a coadjoint orbit.

Polarization relies on a construction Lagrangian foliations, which may

not always exist. To amend this shortfall, [6] replaces Lagrangian foli-

ations with Lagrangian coverings. By a theorem of V. Ginzburg, it is

always possible to construct a Lagrangian covering of a coadjoint orbit.

In fact, there is a unique one for each orbital variety contained in the

orbit. For nilpotent orbits, the main ingredients of the Graham-Vogan

construction are admissible orbit data and orbital varieties.

Our domino tableaux parametrization of orbital varieties facilitates

the computation of a number of parameters required to calculate the

infinitesimal characters of Graham-Vogan representations. For a given

orbital variety, it is easy to extract information such as its maximal sta-

bilizing parabolic as well as to construct certain basepoints from the

corresponding domino tableau. For representations constructed from

orbital varieties whose stabilizing parabolic has dense orbit, this infor-

mation facilitates the computation of the the infinitesimal character.



COMPONENTS OF THE SPRINGER FIBER AND DOMINO TABLEAUX 5

2. Preliminaries

We first describe unipotent and orbital varieties, the relationship

between them, and the combinatorial objects we will use in the rest of

the paper.

2.1. Unipotent and Orbital Varieties. Let G be a connected com-

plex semisimple algebraic group, B a Borel subgroup fixed once and for

all, and F = G/B the flag manifold of G. We consider the fixed point

set Fu of a unipotent transformation u on F . It has a natural struc-

ture of a projective algebraic variety, called the unipotent variety. We

write Irr(Fu) for the set of its irreducible components. The stabilizer

Gu of u in G acts on Fu and gives an action of its component group

Au = Gu/G
◦
u on Irr(Fu).

Now consider a nilpotent element f of the dual of the Lie algebra

g∗ of G. Write Oad
f for the orbit of f under the coadjoint action of G

on g∗. Using the non-degeneracy of the Killing form, we can identify

Oad
f with a subset of g. If b is the Lie algebra of B and n its unipotent

radical, then the set Oad
f ∩ n inherits the structure of a locally closed

algebraic variety from the orbit Oad
f . Its components are Lagrangian

submanifolds of Oad
f and are known as orbital varieties [7]. There is

a simple relationship between the set of orbital varieties contained in

a given nilpotent orbit and the irreducible components of the corre-

sponding unipotent variety. Suppose that the unipotent element u of

G and the nilpotent element f of g∗ correspond to the same partition.

Theorem 2.1 ([11]). There is a natural bijection

Irr(Oad
f ∩ n) −→ Irr(Fu)/Au

between the orbital varieties contained in the nilpotent orbit Oad
f and

the orbits of the finite group Au on Irr(Fu).

The set of nilpotent orbits for a classical G admits a combinatorial

description by partitions. Write P(n) for the set of partitions λ =

[λ1, λ2, . . . , λk] of n, ordered so that λi ≥ λi+1.

Theorem 2.2. Nilpotent orbits in gln are in one-to-one correspondence

with the set P(n).

The corresponding statement for the other classical groups is not

much more difficult. To obtain slightly cleaner statements, we will
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state it in terms of the nilpotent orbits of the sightly larger isometry

groups of nondegenerate bilinear forms. Let ε = ±1, write εi = −ε(−1)i

and consider a nondegenerate bilinear form on Cm satisfying (x, y)ε =

ε(y, x)ε for all x and y. Let Gε be the isometry group of this form and

gε be its Lie algebra. Define a subset Pε(m) of P(m) as the partitions λ

satisfying #{j|λj = i} is even for all i with εi = −1. The classification

of nilpotent orbits now takes the form:

Theorem 2.3 ([5]). Let m be the dimension of the standard represen-

tation of Gε. Nilpotent Gε-orbits in gε are in one to one correspondence

with the partitions of m contained in Pε(m).

The nilpotent Gε orbits in gε can be identified with the nilpotent

orbits of the corresponding adjoint group with one exception. In type

D, precisely two nilpotent orbits of the adjoint group correspond to

every very even partition. We will write Of for the Gε-orbit through

the nilpotent element f and Oλ for the Gε-orbit that corresponds to

the partition λ in this manner.

The group Au is always finite, and in the setting of classical groups,

it is always a two-group. More precisely:

Theorem 2.4 ([12](I.2.9)). The group Au is always trivial when G is

of type A. In the other classical types, let Bλ be the set of the distinct

parts λi of λ satisfying (−1)λi = −ε. Then Au is a 2-group with |Bλ|
components.

2.2. Standard Tableaux. A partition of of an integer m corresponds

naturally to a Young diagram consisting of m squares. We call the

partition underlying a Young diagram its shape. Recall the definitions

of the sets of standard Young tableaux and standard domino tableaux

from, for instance, [2]. We will write SY T (λ) and SDT (λ) respectively

for the sets of Young and domino tableaux of shape λ. We refer to both

objects generically as standard tableaux of shape λ, or ST (λ), hoping

that the precise meaning will be clear from the context. Also, we will

write ST (n) for the set of all standard tableaux with largest label n.

We view each standard tableau T as a set of ordered pairs (k, Sij),

denoting that the square in row i and column j of T is labelled by

the integer k. When T is a domino tableau, the domino with label

k, or D(k, T ), is a subset of T of the form {(k, Sij), (k, Si+1,j)} or
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{(k, Sij), (k, Si,j+1)}. We call these vertical and horizontal dominos,

respectively. For convenience, we will refer to the set {(0, S11)} as the

zero domino when in type B. Whenever possible, we will omit labels of

the squares and write Sij for (k, Sij). In that case, define label Sij = k.

Definition 2.5. For a standard tableau T , let T (k) denote the tableau

formed by the squares of T with labels less than or equal to k. A domino

tableau T is admissible of type X = B, C, or D, if the shape of each

T (k) is a partition of a nilpotent orbit of type X.

The dominos that appear within admissible tableaux fall into three

categories. Following [15] , we call these types I+, I−, and N .

Definition 2.6. (1) In types Bn and Dn (respectively Cn), a ver-

tical domino is of type I+ if it lies in an odd (respectively even)

numbered column.

(2) A vertical domino not of type I+ is of type I−.

(3) A horizontal domino is of type N if its left square lies in an

even (respectively odd) numbered column.

Example 2.7. Suppose that G is of type Cn and consider the tableaux

T = 1 2 3 4
5 T ′ = 1

2 3 5

4

Then T is admissible of type C but T ′ is not, since shape T ′(2) = [3, 1]

is not the partition of a nilpotent orbit in type C. The dominos D(1, T )

and D(3, T ) are of type I−, D(2, T ) and D(4, T ) are of type I+, and

D(5, T ) is of type N .

Clusters partition the set of dominos in an admissible standard domino

tableau into subsets. We follow [15] and define them inductively. Hence

suppose we already know the clusters of T (k − 1) and would like to

known how D(k, T ) fits into the clusters of T (k). Here is a summary:

Definition 2.8. In types Bn and Cn, let cl(0) be the cluster containing

D(1, T ).

(1) If D(k, T ) = {Sij, Si+1,j} and type D = I−, then D(k, T ) joins

the cluster of the domino containing Si,j−1. If j = 1, then

D(k, T ) joins cl(0).
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(2) If D(k, T ) = {Sij, Si+1,j} and typeD = I+ then D(k, T ) forms

a singleton cluster in T (k), unless i ≥ 2 and Si−1,j+1 is not in

T . In the latter case, D(k, T ) joins the cluster of the domino

containing Si−1,j.

(3) Take D(k, T ) = {Sij, Si,j+1}, so that type D = N . Let C1 be

the cluster of the domino containing {Si,j−1} but if j = 1, let

C1 = cl(0). If i ≥ 2 and Si−1,j+2 is not in T , let C2 be the

cluster of the domino that containing Si−1,j+1. If C1 = C2 or

C2 does not exist, the new cluster is C1 ∪D(k, T ). If C1 6= C2,

the new cluster is C1 ∪ C2 ∪D(k, T ).

(4) The clusters of T (k − 1) left unaffected by the above simply

become clusters of T (k).

Definition 2.9. A cluster is open if it contains domino of type I+ or N

along its right edge and is not cl(0). A cluster that is neither cl(0) nor

open is closed. Denote the set of open clusters of T by OC(T ) and the

set of closed clusters as CC(T ). For a cluster C, let IC be the domino in

C with the smallest label and take Sij as its left and uppermost square.

For X equal to B or C, we say that C is an X-cluster iff i + j is odd.

For X equal to D or D′ (see [4] for definition), we say that C is an

X-cluster iff i + j is even.

This definition differs from [15] as we do not call cl(0) an open cluster.

Example 2.10. Using the domino tableaux from Example 2.7, if G is

of type C, then T has three clusters: {1}, {2, 3}, and {4, 5}; the first

is cl(0), the second is closed, and the third is open. The tableau T ′

consists of one cluster.

The open clusters of T correspond to the parts of λ contained in Bλ,

the set parameterizing the Z2 factors of Aλ. As the latter set param-

eterizes the Z2 factors of Aλ, we will ultimately use open clusters to

describe the action of Aλ on the irreducible components of Fu. To be

more precise, define a map

bT : Bλ −→ OC(T ) ∪ cl(0).

For r ∈ Bλ, let bT (r) be the cluster that contains a domino ending a row

of length r in T . This map is well-defined: any two dominos that end

two rows of the same length belong to the same cluster; furthermore,
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such a cluster is always open or it is cl(0). The map bT is also onto

OC(T ), but it is not one-to-one as T may have fewer open clusters

than |Bλ|.
We also recall the notions of a cycle in a domino tableau and mov-

ing through such a cycle, as defined in [2]. We will think of cycles

as both, subsets of dominos of T , as well as just sets of their labels.

Write MT (D(k, T ), T ) for the image of the domino D(k, T ) under the

moving through map and MT (k, T ) for the image of T under moving

through the cycle containing the label k. If U is a set of cycles of T

that can be moved through independent of one another, we will fur-

ther abuse notation by writing MT (U, T ) for the tableau obtained by

moving through all the cycles in U . Recall the definition of X-fixed

and X-variable squares for X = B, C, D, or D′ [2]. Under the moving

through map, the labels of the fixed squares are preserved while those

of variable ones may change. We will call a cycle whose fixed squares

are X-fixed an X-cycle. Note also that the B- and C-cycles as well as

the D- and D′-cycles in a given tableau T coincide.

Example 2.11. Consider the domino tableaux T and T ′ from Example

2.7. The C-cycles in T are {1}, {2,3}, and {4,5} while those in T ′ are

{1} and {2,3,4,5}. We have

MT (2, T ) = 1
2

4
5

3
MT (4, T ) = 1 2 3

4 5

The D-cycles in T are {1,2}, {3,4}, and {5}, while there is only one in

T ′, mainly {1,2,3,4,5}.

3. Signed Domino Tableaux Parameterizations

The irreducible components of the unipotent variety Fu for classi-

cal G were described by N. Spaltenstein in [12]. We summarize this

parametrization as interpreted by M.A. van Leeuwen [15]. Its advan-

tage lies in a particularly translucent realization of the action of Au on

Irr(Fu).

3.1. Equivalence Classes of Signed Domino Tableaux. Let m be

the rank of G. Fix a unipotent element u ∈ G and let λ be the partition
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of the corresponding nilpotent orbit. We define a map

Fu −→ ST (λ)

by the following procedure. Fix a flag F = 0 ⊂ F1 ⊂ F2 ⊂ . . . ∈ Fu

and let λ′ be the shape of the Jordan form of the unipotent operator u↓

induced by u on the space F ↓ defined as F/F1 in type A and F⊥
1 /F1 in

the other classical types. The difference between the Young diagrams

of λ and λ′ is one square in type A and a domino in the other classical

types. By assigning the label m to the set λ\λ′ and repeating the pro-

cedure with the triple (F, u,m) replaced by (F ↓, u↓,m− 1), we obtain

a standard tableau of shape λ.

Theorem 3.1. When G is of type A, the this construction defines a

surjection onto SY T (λ) that separates points of Irr(Fu). That is, it

defines a bijection

Irr(Fu) −→ SY T (λu).

Corollary 3.2. When G is of type A, the orbital varieties Irr(Oλ ∩ n)

are parameterized by the set SY T (λ).

In the other classical types, any domino tableau in the image of the

above map is admissible. Admissible tableaux, however, do not fully

separate the components of Fu. If two flags give rise to different domino

tableaux in this way, they lie in different components of Fu. However,

the converse is not true. The inverse image Fu,T of a given admissible

tableau T under this identification is in general not connected. Never-

theless, the irreducible components of Fu,T are precisely its connected

components [15](3.2.3). Accounting for this disconnectedness yields a

parametrization of Irr(Fu).

Definition 3.3. A signed domino tableau T of shape λ is an admissible

domino of shape λ together with a choice of sign for each domino of

type I+. The set of signed domino tableaux is denoted ΣDT (λ).

The set ΣDT (λ) is too large to parameterize Irr(Fu) and we follow

[15] in defining equivalence classes.

Definition 3.4. Write |T | for the standard domino tableau underly-

ing a signed domino tableau T . If T, T ′ ∈ ΣDT (λ), let T ∼op,cl T ′

iff |T | = |T ′| and the products of signs in all corresponding open and
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closed clusters of T and T ′ agree. Denote the equivalence classes by

ΣDTop,cl(λ). Define the set ΣDTcl(λ) similarly. We represent the ele-

ments of ΣDTop,cl(λ) and ΣDTcl(λ) as admissible tableaux with a choice

of sign for each of the appropriate clusters.

3.2. Parametrization Map. There is a considerable amount of free-

dom in how a bijection between ΣDTop,cl(λ) and Irr(Fu) can be defined.

In fact, it is possible to choose the bijection in such a way that a spe-

cific element of ΣDTop,cl(λ) with underlying tableau |T | is mapped to

any chosen component of Fu,|T |. We follow [15] and define a particular

choice. A similar construction appears in [12](II.6).

The main step requires constructing certain flags FT for T ∈ ΣDT (λ)

that will lie in Fu,|T |. They will be build up from special lines which

we now need to define. We begin by recalling the notion of a C[u]-

module from [12](II.6) for a unipotent u. Essentially, these are finite-

dimensional modules over the polynomial ring C[u − 1] together with

a bilinear form b on which u− 1 acts nilpotently and b is fixed by the

action of u. For a C[u]-module N , we will write J(N) for the partition

of the nilpotent orbit corresponding to u.

We construct a few basic C[u]-modules. Let Mj be Cj with an action

of u−1 defined by (u−1) ·e1 = 0 and (u−1) ·ei = ei−1 for i > 1 on the

basis elements {ei}. Note that J(Mj) = j. The bilinear form bMj
can be

defined inductively. Let bM1(e1, e1) = 1. Suppose that Mj−2 is already

defined. The form bMj
is then determined by the conditions that Mj is

non-degenerate, and that the isomorphism 〈e1〉⊥/〈e1〉 → Mj−2 sending

the coset of ei to the coset of ei−1 becomes a C[u]-module isomorphism.

In this case, define the special line in Mj to be 〈e1〉.
Note the Mj × Mj is also a C[u]-module. Define two special lines

l+ as 〈(e1, ie1)〉 and l− as 〈(e1,−ie1)〉 where i is a fixed square root of

negative one.

Define modules Mj,j as submodules of Mj+1 ×Mj+1 given by l⊥+/l+.

The corresponding special line is the image of l+ ⊕ l−/l+.

Now let λ be a partition in Pε(m). Its Young diagram can be par-

titioned in a unique way in to rows of length j with εj = 1 and pairs

of adjacent rows of length j with εj = −1. We define a module Mλ as

a product of Mj for each εj = 1 and Mj,j for each pair of rows with

εj = −1. The special lines in Mλ will correspond to the dominos at the
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periphery of λ. Let D be such a domino and define the special line in

Mλ belonging to D to be the special line in the appropriate summand

of Mλ. When D is of type I+, this leaves us the choice between l+ and

l−, so we choose lsign(D).

If l is a special line in Mλ that belongs to a domino D, and λ′ is

the partition with D removed, then there is a canonical isomorphism

l⊥/l → Mλ′ . When the sign of D is negative, we use the automorphism

mapping l− to l+ to transform the canonical isomorphism l⊥+/l+ → Mλ′

to an isomorphism l⊥−/l− → Mλ′ . We write F ' F ′ when a flag F in

l⊥/l corresponds in this manner to a flag F ′ ∈ Mλ′ .

Finally, we are ready to define FT . This is done inductively by

requiring that for all k ≤ m:

(1) (FT (k))1 is the special line belonging D(k, T (k)), and

(2) (FT (k))
⊥
1 /(FT (k))1 ' FT (k−1)

A easy enumeration of cases shows that two such flags FT and FT ′

lie in the same component of Fu,|T | whenever T ∼op,cl T ′. This allows

us to define a map Γu from ΣDT (λ) to the components of Fu,|T | by

sending the equivalence class of T to the unique component containing

FT .

We describe an action of Au on ΣDTop,cl(λu). For r ∈ Bλ, let bT (r)

be the cluster that contains a domino ending a row of length r in T .

Let ξr act trivially if bT (r) = cl(0) and by changing the sign of the open

cluster bT (r) otherwise. For each r ∈ Bλ, let gr denote the generator

of the corresponding Z2 factor of Au. One can now define the action of

gr on ΣDTop,cl(λu) by gr[T ] = ξr[T ].

Theorem 3.5 ([15]). Suppose that G is a classical group not of type

A and u is a unipotent element of G corresponding to the partition λ.

The map Γu defines an Au-equivariant bijection between the components

Irr(Fu) and ΣDTop,cl(λ).

Since Au acts by changing the signs of the open clusters of ΣDTop,cl(λ),

it is simple to parameterize the Au orbits on Irr(Fu).

Corollary 3.6. Suppose that G is a classical group not of type A and

O′
λ is the nilpotent orbit corresponding to the partition λ . The orbital

varieties Irr(Oλ ∩ n) are parameterized by ΣDTcl(λ).
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4. Domino Tableaux Parameterizations

We show how to index the components Irr(Fu) and Irr(Oλ ∩ n) by

families of standard tableaux. In type A, this is Theorem 1. For the

other classical types, we define maps from domino tableaux with signed

clusters to the set of standard domino tableaux by applying Garfinkle’s

moving through map to certain distinguished cycles.

4.1. Definition of Bijections. Consider an X-cluster C and let IC be

the domino in C with the smallest label. Let YC be the X-cycle through

IC . We call it the initial cycle of the cluster C.

Proposition 4.1. A cluster of an admissible domino tableau T that is

either open or closed contains its initial cycle.

We defer the proof to another section. Armed with this fact, we can

propose a map

Φ : ΣDTop,cl(n) −→ SDT (n)

by moving through the distinguished cycles of all open and closed clus-

ters with positive sign. More explicitly, for a tableau T ∈ ΣDTop,cl, let

C+(T ) denote the set of open and closed clusters of T labelled by a

(+) and let σ(T ) = {YC | C ∈ C+(T )} be the set of their distinguished

cycles. Write |T | for the standard domino tableau underlying T . We

define

Φ(T ) = MT (σ(T ), |T |).
Lemma 4.2. The map Φ : ΣDTop,cl(n) −→ SDT (n) is a bijection.

We can view the set ΣDTcl(n) as a subset of ΣDTop,cl(n) by assigning

a negative sign to each unsigned open cluster of a domino tableau in

ΣDTcl(n). Restricted to ΣDTcl(n), Φ preserves the shapes of tableaux

and defines a bijection Φ : ΣDTcl(λ) −→ SDT (λ) for each λ a shape

of a nilpotent orbit.

Proof. We check that Φ is well-defined, that its image lies in SDT (n),

and then construct its inverse. We first need to know that the definition

of Φ does not depend on which order we move through the cycles in

σ(T ). It is enough to check that if YC and YC′ ∈ σ(T ), then YC′ is also

lies in σ(MT (|T |,YC)). While this statement is not true for arbitrary

cycles, in our setting, this is Lemma 4.4.
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The image of Φ indeed lies in SDT (n). That Φ(T ) is itself a domino

tableau follows from the fact that moving through any cycle of |T |
yields a domino tableau. Hence Φ(T ) ∈ SDT (n) and if T ∈ ΣDTcl(λ)

then Φ(T ) ∈ SDT (λ) since in this case Φ moves through only closed

cycles.

The definition of a cluster forces the initial domino IC of every closed

cluster to be of type I+. By the definition of moving through, the

image of MT (IC, T ) in MT (YC, T ) is inadmissible, i.e. it is a horizontal

domino not of type N . In general, all the inadmissible dominos in

Φ(T ) appear within the image of distinguished cycles under moving

through. Furthermore, the lowest- numbered domino within each cycle

is the image of the initial domino of some distinguished cycle. With

this observation, we can construct the inverse of Φ. We define a map

Ψ : Φ(ΣDTop,cl(n)) −→ ΣDTop,cl(n)

that satisfies Ψ ◦ Φ = Identity. Let ι(Φ(T )) be the set of cycles

in Φ(T ) that contain inadmissible dominos. We define Ψ(Φ(T )) =

MT (Φ(T ), ι(Φ(T ))). By the above discussion, ι(Φ(T )) contains pre-

cisely the images of cycles in σ(T ). Hence

Ψ(Φ(T )) = MT (Φ(T ), ι(Φ(T ))) = MT (MT (|T |, σ(T ))) = T

as desired. Thus Φ is a bijection onto its image in SDT (n) and re-

stricted to ΣDTcl(λ), it is a bijection with its image in SDT (λ). As we

already know that the sets ΣDTcl(λ) and SDT (λ) both parameterize

the same set of orbital varieties, and that ΣDTop,cl(n) and SDT (n)

both parameterize the same set of irreducible components of unipotent

varieties, Φ must provide bijections between these two sets. ¤

Theorems 1.1 and 1.2 are immediate consequences.

Example 4.3. Let G be of type D and suppose that both u and Oλ

correspond to the partition λ = [32]. The van Leeuwen parameter set

ΣDTop,cl([3
2]) for Irr(Fu) is:

1
+ 2 3

+
1
− 2 3

+
1
+ 2 3

−
1
− 2 3

−
1
+

2
3

1
−

2
3

The image of ΣDTop,cl([3
2]) under Φ is the following set of standard

domino tableaux. We write the image of a given tableau in the same
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relative position. Note that this parameter set for Irr(Fu) consists of

all tableaux of shapes [32] and [4, 2].

1 3
2

1 2
3 1

3
2

1 2 3
1 2
3

1
2
3

The van Leeuwen parameter set ΣDTcl([3
2]) for the orbital varieties

contained in Oλ is:

1
+ 2 3 1

− 2 3 1
2
3

Its image under Φ is the set of all domino tableaux of shape [32]. Again,

we write the image of a tableau in the same relative position.

1
3

2
1 2 3 1

2
3

4.2. Independence of Moving Through Initial Cycles.

Lemma 4.4. Consider open or closed clusters C and C ′ and their initial

cycles YC and YC′ . Then YC is again a cycle in MT (|T |,YC′).
Proof. If C and C ′ are clusters of the same type, then so are their

initial cycles and the lemma is [2](1.5.29). Otherwise, without loss

of generality, take C to be a C-cluster and C ′ to be a D-cluster. As

the proof in the other cases is similar, we can also assume that YC is

C-boxed while YC′ is D-boxed.

Suppose that the dominos D(r) ∈ YC and D(s) ∈ YC′ lie in relative

positions compatible with the diagram

s

r

where the box labelled by r is fixed. The same squares in MT (|T |,YC′)
have the labels

s′

r

for some s′.
To prove the lemma, we need to show that s < r implies s′ < r and

s > r implies s′ > r. Since our choice of r and s was arbitrary, this

will show that YC remains a cycle. There are two possibilities for the
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domino D(s). It is either horizontal or vertical and must occupy the

following squares:

s s

r

s

s

r

Case (i) Case (ii)

Case (i). In this case, s < r always. Garfinkle’s rules for moving

through imply that MT (|T |, D(r)) ∩ C ′ 6= ∅. This is a contradiction

since we know by hypothesis that YC 6= YC′ . Hence this case does not

occur.

Case (ii). First suppose s > r. Then the squares within MT (|T |,YC′)
must look like

s

s′

r

for some s′ 6= s. Since the tableau MT (YC′ , T ) is standard, this requires

that s′ > s implying s′ > r which is what we desired. Now suppose

s < r and suppose the squares in our diagram look like

s

t s

r u

As in Case (i), we find that D(t) /∈ C ′. Since D(t) ∈ C, type D(s) =

I+ implies type D(t) = I−, type D(r) = I−, and type D(u) = I+.

Otherwise, the rules defining clusters would force s to lie in the cluster

C. Now D(u) lies in the initial cycle of a closed cluster of same type

as C ′. Since it lies on the periphery and its type is I+, then its top

square must be fixed. In particular, D(u) /∈ C. But s < r implies

MT (D(r)) ∩ D(u) 6= ∅. This is a contradiction, implying that this

case does not arise.

To finish the proof, we must examine the possibility that D(s) and

D(r) lie in the relative positions described by

r

s .

This case is completely analogous and we omit the proof. ¤

This lemma shows that the image of moving though a subset of

distinguished cycles is independent of the order in which these cycles
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are moved though. Note, however, that a similar result is not true for

subsets of arbitrary cycles.

4.3. Nested Clusters and the Periphery of a Cluster. We aim to

show that closed and open clusters contain their distinguished cycles.

The proof has two parts. First, we show that YC is contained in a larger

set of clusters C, defined as the union of C with all of its nested clusters.

Then, we show that YC intersects each of the nested clusters trivially.

Let C be a cluster of a tableau T and denote by rowk T = {Sk,j| j ≥
0} the kth row of T . Define colk T similarly. If rowk T ∩ C 6= ∅,
let infk C = inf{j| Sk,j ∈ rowk T ∩ C} and supk C = sup{j | Sk,j ∈
rowkT ∩ C}.
Example 4.5. Consider the following tableau of type D. It has two

closed clusters given by the sets C = {1, 2, 3, 4, 5, 8, 9, 10, 11, 12} and

C ′ = {6, 7}.
1

3 5
11

4 6 7 8

2 12
9 10

C is a D-cluster while C ′ is a B-cluster. YC is then a D-cycle and

consists of the dominos in the set {1, 3, 5, 11, 12, 10, 9, 2}. T has two

other D-cycles, {4, 6} and {7, 8}. Both intersect C, but are not con-

tained within it. The B-cycle YC′ equals {6, 7} and is contained in

C ′. Hence an X-cluster may not contain all the X-cycles through its

dominos. However, it always contains its initial cycle. Also notice that

C completely surrounds C ′. We call such interior clusters nested.

Nested clusters complicate the description of clusters. To simplify

our initial results, we would like to consider the set formed by a cluster

together with all of its nested clusters. To be more precise:

Definition 4.6. Let C ′ be a cluster of T . It is nested in C if all of the

following are satisfied:

inf{k|rowkT ∩ C ′ 6= ∅} > inf{k|rowkT ∩ C 6= ∅}
sup{k|rowkT ∩ C ′ 6= ∅} < sup{k|rowkT ∩ C 6= ∅}

inf{k|colkT ∩ C ′ 6= ∅} > inf{k|colkT ∩ C 6= ∅}
sup{k|colkT ∩ C ′ 6= ∅} < sup{k|colkT ∩ C 6= ∅}
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Define C to be the union of C together with all clusters nested within it.

We will write periphery(C) for the set of dominos in C that are adjacent

to some square of T that does not lie in C. Note that periphery(C) is

a subset of the original cluster C.

Example 4.7. In the above tableau, C ′ is nested in C. Furthermore,

C ∪ C ′ = C = T, and periphery(C) = YC ⊂ C.

The next two propositions describe properties of dominos that occur

along the left and right edges of C. Recall that our definition of the

cycle YC endows C as well as C with a choice of fixed and variable

squares by defining the left and uppermost square of IC as fixed.

Proposition 4.8. Suppose that C is a non-zero cluster of a domino

tableau T and that the intersection of the k-th row of T with C is not

empty. Then the dominos D(label(Tk,infk C), T ) and D(label(Tk,infk C), T )

are both of type I+. In addition, if C is also closed, then the dominos

D(label(Tk,supk C), T ) and D(label(Tk,supk C), T ) are of type I−.

Proof. The first statement is true for all non-zero clusters by Definition

2.8. The second statement is the defining property of closed clusters.

¤

Proposition 4.9. Suppose that C is a non-zero cluster of a domino

tableau T . If the domino D consisting of the squares Spq and Sp+1,q

lies in periphery(C), then

(1) Spq is fixed if type D = I+ and

(2) Sp+1,q is fixed if type D = I−

Proof. Case (i). Assume that there is a D′ in the periphery(C) of type

I+ whose uppermost square is not fixed. Then periphery(C) must con-

tain two type I+ dominos E = {Sk,l, Sk+1,l} and E ′ = {Sk+1,m, Sk+2,m}
with the squares Skl and Sk+2,m fixed and |m− l| minimal.

Assume m < l. The opposite case can be proved by a similar ar-

gument. Because E ′ is of type I+, there is an integer t such that

m < t < l, Sk+1,t ∈ periphery(C), and t is maximal with these proper-

ties. Let F be the domino containing Sk+1,t. F has to be {Sk+1,t, Sk+2,t}
and of type I−. If its type was I− or N , Definition 2.8 would force

Sk+1,t+1 to be in periphery(C) as well. If F on the other hand was
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{Sk+1,t, Sk,t}, this would contradict the minimality of |m− l|. We now

consider two cases.

(a) Assume t = l − 1. Because E and F lie in periphery(C) and

hence in C, C must contain a domino of type N of the form

{Su,l−1, Su,l} with u > k + 2 and u minimal with this property.

The set of squares {Sp,l−1|k + 2 < p < u} ∪ {Spl|k + 1 < p < u}
must be tiled by dominos, which is impossible, as its cardinality

is odd.

(b) Assume t < l − 1. We will contradict the maximality of t.

Because E and F both lie in C, C must contain a sequence Hα

of dominos of type N satisfying

Hα = {Sk+1+f(α),t+2α, Sk+1+f(α),t+2α+1}
where 0 ≤ α ≤ l−t+1

2
. We choose each Hα such that for all α,

f(α) is minimal with this property. Because the sets {Sk+p,l|k+

1 < p < k +1+ f( l−t+1
2

)} and {Sk+p,t|k +2 < p < k +1+ f(0)}
have to be tiled by dominos of type I+ and I− respectively, f(0)

has to be even and f( l−t+1
2

) has to be odd. Hence there is a β

such that f(β) is even and f(β + 1) is odd.

Assume f(β) < f(β + 1), but the argument in the other

case is symmetric. Let G be the domino containing the square

Sk+1+f(β),t+2β+2. G must belong to C, as Hβ and G is either

of type I− or N . The type of G cannot be N , however, as

this would contradict the condition on f . Hence G must be of

type I−. If G equals {Sk+1+f(β),t+2β+2, Sk+f(β),t+2β+2}. Then by

successive applications of Definition 2.8, the set of dominos

{{Sk+f(β)−γε,t+2β+ε, Sk+1+f(β)−γ−ε,t+2β+ε}}
with ε = 1 or 2 and 0 ≤ γ ≤ f(β) − 2 is contained in C as

well. But this means that t + 2β + ε for ε = 1 or 2 satisfies the

defining property of t, contradicting its maximality.

Case (ii). We would like to show that the bottom square is fixed for

every I− domino in periphery(C). It is enough to show that this is

true for one such domino, as an argument similar to that in case (i)

can be repeated for the others. Let l = inf{k|rowkT ∩ C = ∅}. Then

by 4.8 and the definition of fixed, we know that Sl,infl C is fixed. As
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{Sl,supl C, Sl+1,supl C} is a domino of type I− in periphery(C), we have

found the desired domino. ¤

Lemma 4.10. The following inclusions hold when C is an open or

closed cluster: periphery (C) ⊂ YC ⊂ C.

Proof. Recall that our choice of a fixed square in IC defines the fixed

squares in all of C. Define C̃ as C when C is closed and C union with all

empty holes and corners of |T | adjacent to C when C is open [2](1.5.5).

We show that the image MT (D,T ) of D in periphery(C) lies in C̃. This

shows the second inclusion, as if any domino in periphery(C) stays in C
under moving through, then so must the cycle YC. The first inclusion is

a consequence of the argument and the definitions of moving through

and clusters. We differentiate cases accounting for different domino

positions along periphery(C).

Case (i). Take D = {(k, Sij), (k, Si+1,j)} and suppose typeD = I+.

Because D lies on periphery(C), Proposition 4.9 implies that Sij is

fixed. Due to Definition 2.8 (1) and Definition 2.9, Si,j+1 ∈ C̃.

(a) Suppose Si−1,j+1 in not in C. Then r = label(Si−1,j+1) <

k. Otherwise Si−1,j and Sij would both belong to the same

cluster by Definition 2.8 (1). Since Si−1,j and Si−1,j+1 are in

the same cluster by Definition 2.8 (2) or (3), this contradicts

our assumption. Now [2](1.5.26) forces MT (D, T ) to equal

{(k, Sij), (k, Si,j+1)}, and since Sij and Si,j+1 both belong to

C̃, so must MT (D, T ).

(b) Suppose now that Si−1,j+1 ∈ C̃. Then the square Si−1,j ∈
C as well since by Definition 2.8 (2) or (3), they both be-

long to the same cluster. Now [2](1.5.26) implies MT (D, T ) ⊂
{Sij, Si−1,j, Si,j+1}. As all of these squares lie in C̃, we must also

have MT (D,T ) ⊂ C̃.

Case (ii). Suppose D = {(k, Sij), (k, Si,j+1)} and that the square Si,j+1

is fixed. By Definition 2.8 (1) and Definition 2.9, Si,j+2 ∈ C̃.

(a) Suppose Si−1,j+1 is not in C. Then Si−1,j+2 lies in |T | but not in

C, as by Definition 2.8 (2) or (3), they both belong to the same

cluster. The definition of a cluster forces r = label(Si−1,j+2) < k

and [2](1.5.26(ii)) implies MT (D, T ) = {Si,j+1, Si,j+2}. Since
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the squares Si,j+1 as well as Si,j+2 are both contained in C̃, so

is MT (D, T ).

(b) Suppose Si−1,j+1 lies in C. Then because the domino MT (D, T )

must be a subset of {Si,j+1, Si,j+2, Si−1,j+1}, it must also be a

subset of C.

Case (iii). Suppose D = {(k, Sij), (k, Si,j+1)} and that the square Sij

is fixed. Then Si,j−1 ∈ C by Definition 2.8 (3).

(a) Suppose first that Si+1,j−1 is not in C. Then r = label(Si+1,j−1) >

k by either Definition 2.8 (1) or (3). But [2](1.5.26(iii)) forces

MT (D,T ) to be precisely {Sij, Si,j−1} which is a subset of C.

(b) If Si+1,j−1 ∈ C, then Si+1,j ∈ C̃ as well, since by Definition 2.8

(2) or (3), they either must belong to the same cluster or Si+1,j is

an empty hole or corner. But by [2](1.5.26(iii)(iv)), MT (D, T )

is a subset of {Sij, Si+1,j, Si,j−1}, all of whose squares lie in C̃.

Case (iv). Suppose D = {(k, Sij), (k, Si+1,j)} and that the domino D

is of type I−. The square Si+1,j is then fixed and Si+1,j−1 ∈ C.

(a) Assume that Si+2,j−1 ∈ C. Then Si+2,j ∈ C̃. Since MT (D,T ) is

the domino {Si+1,j, Si+1,j−1} or {Si+1,j, Si+2,j}. Hence MT (D,T )

lies in C as both possibilities are contained in C.

(b) Assume Si+2,j−1 is not in C. We have r = label(Si+2,j−1) > k,

for otherwise D(r, T ) and hence Si+2,j−1 would lie in C. But

then MT (D, T ) = {Si+1,j, Si+1,j−1}, so it is contained in C.

These cases describe all possibilities by Proposition 4.9. ¤

What remains is to see that the initial cycle YC is contained within

the cluster C itself. It is enough to show that its intersection with any

closed cluster nested in C is empty, as open clusters cannot be nested.

Our proof relies on the notion of X-boxing [2](1.5.2). We restate the

relevant result.

Proposition 4.11 ([2](1.5.9) and (1.5.22)). Suppose that the dominos

D(k, T ) and D(k′, T ) both belong to the same X-cycle. Then

(1) D(k, T ) is X-boxed iff MT (D(k, T ), T ) is not X-boxed.

(2) D(k, T ) and D(k′, T ) are both simultaneously X-boxed or not

X-boxed.

Lemma 4.12. If C ′ ⊂ C is a closed cluster nested in C, then YC∩C ′ = ∅.
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Proof. It is enough to show that periphery(C ′)∩YC = ∅, as this forces

C ′ ∩ YC = ∅. We divide the problem into a few cases.

Case (i). Suppose {type YC, type YC′} = {C, D′}. We investigate

the intersection of periphery(C ′) with YC. It cannot contain domi-

nos of types I+ and I−; because the boxing property is constant on

cycles according to Proposition 4.11(ii), such dominos would have to

be simultaneously C and D-boxed, which is impossible. If D(k, T ) ∈
periphery(C ′) ∩ YC′ is of type (N), D(k, T ) and MT (D(k, T ), T ) are

both C and D’-boxed. This contradicts Proposition 4.11(i), forcing

periphery(C ′) ∩ YC = ∅. The proof is virtually identical when the set

{type YC, type YC′} equals {B,D} instead.

Case (ii). Suppose {type YC, type YC′} = {C, D}. The proof is sim-

ilar to the first case, except this time, dominos of type N cannot be

simultaneously C and D-boxed. Again, the proof is identical when the

set {type YC, type YC′} equals {B,D′} instead.

Case (iii). Suppose {type YC, type YC′} ⊂ {B, C} or {D,D′}. Then

by by the definition of cycles, YC ∩YC′ = ∅. We know periphery(C ′) ⊂
YC′ ⊂ C ′ by Lemma 4.10, implying again that periphery(C ′) ∩ YC =

∅. ¤

5. The τ-Invariant for Orbital Varieties

A natural question is whether our method of describing orbital vari-

eties by standard tableaux gives the same parametrization as [8]. More

precisely, if π : Irr(Fu)/Au → Irr(Ou ∩ n) is the bijection of [11], does

the same tableau parameterize both C ∈ Irr(Fu)/Au and its image

V = π(C)? Write T (C) for the domino tableau corresponding to the

Au-orbit C ∈ Irr(Fu)/Au via the map of the previous section and T (V)

for the domino tableau used to parameterize V in [8].

Let Π = {α1, . . . , αn} be the set of simple roots in g. Write {e1, . . . , en}
for the basis of the dual of the Cartan subalgebra, and choose the in-

dices so that α1 = 2e1 in type Cn, α1 = e1 in type Bn, and α1 = e1 + e2

in type Dn. The remaining simple roots are then αi = ei − ei−1 for

2 ≤ i ≤ n. The τ -invariant, a subset of Π, is defined for orbital va-

rieties in [7] and for components of the Springer fiber in [12]. It is

constant on each Au-orbit. For a standard domino tableau T , it can be

defined in terms of the relative positions of the dominos. We say that
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a domino D lies higher than D′ in a tableau T iff the rows containing

squares of D have indices strictly smaller than the indices of the rows

containing squares of D′. Then τ(T ) consists of precisely the simple

roots αi whose indices satisfy:

(1) i = 1 and the domino D(1, T ) is vertical and, if G is of type D,

shape(T (2)) 6= [3, 1],

(2) i > 1 and D(i− 1, T ) lies higher than D(i, T ) in T .

The notion of the τ -invariant can be generalized using wall-crossing

operators to define equivalence classes of domino tableaux, see for in-

stance [3] and [4]. Defined on tableaux, the generalized τ -invariant is

used to classify primitive ideals in groups of type Bn and Cn. In type

Dn, a further generalization, the generalized generalized τ -invariant is

necessary. According to [4], there is in fact a unique tableau of a given

shape within each equivalence class of tableaux generated by the gen-

eralized τ -invariant. We show

Theorem 5.1. Suppose that C ∈ Irr(Fu)/Au and that V = π(C). Then

τ(T (C)) = τ(T (V)).

Proof. In fact, we show that all of following sets are equal.

τ(T (V)) = τ(V) = τ(C) = τ(T (C)).

The first equality follows from [8] and [7]. The second from the

definition of π. We verify the third.

Recall the map Φ : SDTop,cl → SDT defined in the previous section.

We prove that if T̃ ∈ SDTop,cl parameterizes the irreducible component

C ∈ IrrFu in [15], then its τ -invariant τ(C) is precisely the τ -invariant

of the standard domino tableau Φ(T̃ ) = T (C) as defined above. The

content of the proof is a description of the effect of Φ on the character-

ization of the τ -invariant of the components of the Springer fiber given

in [12]:

Proposition 5.2. [12](II.6.29 and II.6.30) Let X = B, C, or D. Con-

sider C ∈ Irr Fu,|T |, that is, an irreducible component whose classify-

ing tableau T in SDTop,cl has underlying domino tableau |T |. Then

αi ∈ τ(C) iff one of the following is satisfied:

(i) i = 1, D(1, T ) is vertical, and X 6= D,

(ii) i > 1 and D(i− 1, |T |) lies higher that D(i, |T |) in |T |,
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(iii) i > 1 and {D(i− 1, T ), D(i, T )} ∈ CC+(T ),

(iv) If X = D, then α1 ∈ τ(C) iff {1, 2} ∈ CC−(T ) and shape(T (2)) 6=
[3, 1], while α2 ∈ τ(C) iff {1, 2} ∈ CC+(T ).

That α1 ∈ τ(C) iff α1 ∈ τ(Φ(T̃ ) is clear in types Bn and Cn since

D(1, T ) never lies within a closed cluster and hence remains unaltered

by Φ. In type Dn, the conditions for αi, when i ≤ 2, to lie in τ(C)

described by Spaltenstein translate exactly to our conditions for αi to

lie in τ(Φ(T̃ ).

For i > 1, suppose that either D(i, T ) or D(i − 1, T ) lies in some

K ∈ CC+(T ). If K contains more than two dominos, then [4](III.1.4)

implies that αi ∈ τ(C) iff αi ∈ τ(Φ(T̃ )).

So suppose that K contains exactly two dominos. If, in fact, K =

{D(i), D(i − 1)}, the simple root αi must lie in τ(C). But D(i − 1) is

higher than D(i) in MT (C, T ) , implying by the definition of Φ that

αi ∈ τ(Φ(T̃ )) as well. The remaining possibility is that only one of the

dominos D(i) and D(i− 1) lies in the two-domino cluster K. Then the

fact that αi ∈ τ(C) iff αi ∈ (T̃ ) follows by inspection. ¤
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