
Regular and Nonregular
Languages

Chapter 8

Regular and Non-Regular Languages

Are all finite languages regular?

Regular and Non-Regular Languages

Are all finite languages regular?

Are all infinite languages non-regular?

Regular and Non-Regular Languages

Are all finite languages regular?

Are all infinite languages non-regular?

What must be true about an FSM that accepts an infinite
language or a regular expression that generates an
infinite language?

Regular and Non-Regular Languages
The only way to accept/generate an infinite language with

a finite description is to use:
• cycles (in FSM), or
• Kleene star (in regular expressions)

This forces some kind of simple repetitive cycle within the
strings.

Example 1:
NDFSM with accepting start state and
single self loop labeled a

Example 2:
ab*a generates aba, abba, abbba, abbbba, etc.

How Long a String Can Be Accepted?

What is the longest string that a 5-state FSM can accept?

How about with no loops?

Exploiting the Repetitive Property

If an FSM with n states accepts any string of length ³ n, how
many strings does it accept?

L = bab*ab
b a b b b b a b
x y z

xy*z must be in L.
So L includes: baab, babab, babbab, babbbbbbbbbbab…

Theorem – Long Strings
Theorem: Let M = (K, S, d, s, A) be any DFSM. If M

accepts any string of length |K| or greater, then that string
will force M to visit some state more than once (thus
traversing at least one loop).

Theorem – Long Strings
Theorem: Let M = (K, S, d, s, A) be any DFSM. If M

accepts any string of length |K| or greater, then that string
will force M to visit some state more than once (thus
traversing at least one loop).

Proof: M must start in one of its states. Each time it reads
an input character, it visits some state. So, in processing
a string of length n, M creates a total of n + 1 state visits.
If n+1 > |K|, then, by the pigeonhole principle, some state
must get more than one visit. So, if n ³ |K|, then M must
visit at least one state more than once.

The Pumping Theorem for Regular Languages

If L is regular, then every long string in L is “pumpable.”

To be precise, if L is regular, then

$k ³ 1

(" strings w Î L, where |w| ³ k

($ x, y, z (w = xyz ⋀
|xy| £ k ⋀
y ¹ e ⋀
"q ³ 0 (xyqz is in L)))).

The Pumping Theorem for Regular Languages

If L is regular, then every long string in L is “pumpable.”

To be precise, if L is regular, then

$k ³ 1,
{" w Î Σ*,

[(w Î L �|w| ³ k) =>
$ x, y, z Î Σ*,

(w = xyz ⋀
|xy| £ k ⋀
y ¹ e ⋀
"q ³ 0 (xyqz is in L)]}.

Showing a Language is Not Regular

If the following is true, then L is not regular:

"k ³ 1,
{$ w Î Σ*,

[(w Î L �|w| ³ k) ⋀
" x, y, z Î Σ*,

(w = xyz�
|xy| £ k �
y ¹ e) ⋀
$ q ³ 0 (xyqz is NOT in L)]}.

No matter what k is (no matter how many states are in
the DFSM), we can find a string in L with length at
least k that is not “pumpable.”

Example: {anbn: n ³ 0} is not Regular
Choose w to be akbk (Given k, we get to choose any w.)

1 2
a a a a a … a a a a a b b b b … b b b b b b

x y z

We show that there is no x, y, z with the required properties:
w = xyz
|xy| £ k,
y ¹ e,
" q ³ 0 (xyqz is in L).

Since |xy| £ k, y must be in region 1. So y = ap for some p ³ 1.
Let q = 2, producing:

ak+pbk

which Ï L, since it has more a’s than b’s.

Using the Pumping Theorem
If L is regular, then every “long” string in L is pumpable.

To show that L is not regular, we find one that isn’t.

To use the Pumping Theorem to show that a language L is
not regular, we must:

1. Choose a string w where |w| ³ k. Since we do not know
what k is, we must state w in terms of k.

2. Divide the possibilities for y into a set of possible cases
that need to be considered.

3. For each such case where |xy| £ k and y ¹ e: choose a
value for q such that xyqz is not in L.

Bal = {w Î {), (}* :the parens are balanced}

PalEven = {wwR : w Î {a, b}*}

{anbm: n > m}

Using the Pumping Theorem Effectively
� To choose w:
�Choose a w that is in the part of L that makes it not
regular, e.g. not aaaaaa for palindrome.
�Choose a w that is only barely in L, i.e. pumping part
of it will produce a string not in L, e.g. ak+1bk for anbm, n
> m
�Choose a w with as homogeneous as possible an
initial region of length at least k, e.g. akbk for anbn, n >=
0 and Balanced Parens.

This can mean a string longer than k.

� To choose q:
� Try letting q be either 0 or 2.
� If that doesn’t work, analyze L to see if there is some
other specific value that will work.

Using the Closure Properties

The two most useful ones are closure under:

• Intersection

• Complement

Using the Closure Properties

L = {w Î {a, b}*: #a(w) = #b(w)}

If L were regular, then:

L¢ = L Ç _______

would also be regular. But it isn’t.

Using the Closure Properties

L = {w Î {a, b}*: #a(w) ≠ #b(w)}

If L were regular, then the complement of L would also be
regular. Is it?

