A e S

Regular and Nonregular
Languages

Chapter 8

Regular and Non-Regular Languages

Are all finite languages regular?

Regular and Non-Regular Languages

Are all finite languages regular?

Are all infinite languages non-regular?

Regular and Non-Regular Languages

Are all finite languages regular?
Are all infinite languages non-regular?
What must be true about an FSM that accepts an infinite

language or a regular expression that generates an
infinite language”?

Regular and Non-Regular Languages

The only way to accept/generate an infinite language with
a finite description is to use:
« cycles (in FSM), or
« Kleene star (in regular expressions)

This forces some kind of simple repetitive cycle within the
strings.

Example 1:

NDFSM with accepting start state and
single self loop labeled a

Example 2:
ab”*a generates aba, abba, abbba, abbbba, etc.

How Long a String Can Be Accepted?

What is the longest string that a 5-state FSM can accept?

How about with no loops?

Exploiting the Repetitive Property

% ' If an FSM with n states accepts any string of length > n, how
many strings does it accept?

{ L =bab*ab

‘N babbbbab

X Yy Z

& xy*zmustbein L.
¥ So L includes: baab, babab, babbab, babbbbbbbbbbab...

Theorem — Long Strings

Theorem: Let M = (K, %, 5, s, A) be any DFSM. If M
accepts any string of length |K| or greater, then that string
will force M to visit some state more than once (thus
traversing at least one loop).

Theorem — Long Strings

Theorem: Let M= (K, X, 0, s, A) be any DFSM. If M

accepts any string of length |K| or greater, then that string
will force M to visit some state more than once (thus
traversing at least one loop).

Proof: M must start in one of its states. Each time it reads
an input character, it visits some state. So, in processing
a string of length n, M creates a total of n + 1 state visits.
If n+1 > |K], then, by the pigeonhole principle, some state
must get more than one visit. So, if n > |K]|, then M must
visit at least one state more than once.

The Pumping Theorem for Regular Languages

If L is regular, then every long string in L is “pumpable.”
To be precise, if L is regular, then
dk > 1
(V strings w € L, where |w| > k
(I x,y, z(w=xyz A\
Ixyl <k A

y#el
vq =0 (xy9zis in L)))).

The Pumping Theorem for Regular Languages

If L is regular, then every long string in L is “pumpable.”
To be precise, if L is regular, then

dk > 1,
{(Vwe?2"
[((we L Alw|>k)=>
dx,y,ze 2%,

(w=xyz A\
Ixyl <k A
y#el
Vg =0 (xyizis in L)]}.

Showing a Language is Not Regular

If the following is true, then L is not regular:

Vk>1,
Awe 2",
[((we L Alw|>k) A
VXV zZel"

(w=xyz A
Ixyl <k A
y#¢g) N\
19 >0 (xy9zis NOT in L)]}.

No matter what k is (no matter how many states are in
the DFSM), we can find a string in L with length at
least k that is not “pumpable.”

Example: {a"b": n > 0} is not Regular

Choose w to be akbk (Given k, we get to choose any w.)

1 2
aaaaa..aaaaabbbb ..bbbbbb
X y Z
We show that there is no x, y, z with the required properties:
W = XyZ
Xyl < K,
y # &,

vV q=>0(xy9zisin L).

Since |xy| < k, y must be in region 1. So y = aP for some p > 1.
Let g = 2, producing:

a_k+pbk

which ¢ L, since it has more a’s than b’s.

Using the Pumping Theorem

If L is regular, then every “long” string in L is pumpable.
To show that L is not regular, we find one that isn't.

To use the Pumping Theorem to show that a language L is
not regular, we must:

1. Choose a string w where |w| > k. Since we do not know
what k is, we must state w in terms of k.

2. Divide the possibilities for y into a set of possible cases
that need to be considered.

3. For each such case where |xy| < kand y # . choose a
value for g such that xy9z is not in L.

Bal = {w € {), (}* :the parens are balanced}

PalEven = {wwR : w € {a, b}*}

=
S
A
c
m..
Q
c
{V
e

Using the Pumping Theorem Effectively

® To choose w:

® Choose a w that is in the part of L that makes it not
regular, e.g. not aaaaaa for palindrome.

® Choose a w that is only barely in L, i.e. pumping part
of it will produce a string not in L, e.g. ak*'b* for a"b™, n
>m

® Choose a w with as homogeneous as possible an
initial region of length at least k, e.g. akb for a"b", n >=
0 and Balanced Parens.

This can mean a string longer than k.

® o choose q:
® Try letting g be either 0 or 2.
@ If that doesn’t work, analyze L to see if there is some
other specific value that will work.

Using the Closure Properties

The two most useful ones are closure under:
* |ntersection

 Complement

Using the Closure Properties

L ={w e {a, b}": #.(w) = #,(w)}
If L were regular, then:

L'=L N

would also be regular. Butitisn't.

Using the Closure Properties

L={we {a, bl #.(w) # #. (W)}

If L were regular, then the complement of L would also be
regular. Is it?

