
Finite State Machines

Chapter 5



Pattern Recognition
• Pattern Recognition:

– Given a specified pattern string, and
– a text string provided by the user, 
– output:

• �yes� if the text contains pattern
• �no� if the text does not contain pattern

• DNA Example:  
– looking for �CTT� in string of characters {C, T, A, G}

• Use a Finite State Machine



Finite State Machine (FSM)
• Pattern matching:

– Number of states?             |P| + 1

– Number of transitions?     (|P| + 1) * (# chars in alphabet)

• Not so far from programming:

– Sequential execution

– Conditional execution

– Iterative execution

• NOTE: Assuming text is being read in one character at a 

time, we only need memory to keep track of the state.



Languages and Machines
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Finite State Machines
• Deterministic (DFSM)
• Nondeterministic (NDFSM)



Definition of a DFSM

M = (K, S, d, s, A), where:

K is a finite set of states

S is an alphabet

s Î K is the initial state

A Í K is the set of accepting states, and

d is the transition function from (K ´ S) to K



Accepting by a DFSM

Informally, M accepts a string w iff M is in an accepting 
state (a state in A) when it has finished reading w.

The language accepted by M, denoted L(M), is the set 
of all strings accepted by M.



Configurations of DFSMs
A configuration of a DFSM is an element of:

K ´ S*  

It captures the two things that determine the DFSM’s 
future behavior:

• its current state
• the input that is still left to read.

The initial configuration of a DFSM on input w is (s, w)



The Yields Relations
The yields-in-one-step relation |-M:

(q, w) |-M (q', w') iff
• w = a w' for some symbol a Î S, and
• d (q, a) = q'

The yields-in-zero-or-more-steps relation
|-M * is the reflexive, transitive closure of  |-M



Computations Using FSMs

A computation byDFSM M is a finite sequence of 
configurations C0, C1, …, Cn for some n ³ 0 such 
that:

• C0 is an initial configuration,

• Cn is of the form (q, e), for some state q Î KM,

• C0 |-M C1 |-M C2 |-M … |-M Cn.



Accepting and Rejecting
A DFSM M accepts a string w iff:

(s, w) |-M * (q, e), for some q Î A.

A DFSM M rejects a string w iff:

(s, w) |-M* (q, e), for some q Ï AM. 

The language accepted by M, denoted L(M), is the 
set of all strings accepted by M.

Theorem: Every DFSM M, on input s, halts in |s| 
steps.



An Example Computation
An FSM to accept odd integers:

even                            odd              
even

q0 q1

odd

On input 235, the configurations are:
(q0, 235) |-M (q0, 35)
(q0, 35) |-M          (q1, 5)
(q1, 5)  |-M (q1, e)   
Thus (q0, 235) |-M* (q1, e)



A Simple FSM Example

L = {w Î {a, b}* : 

every a is immediately followed by a b}. 



Parity Checking
L = {w Î {0, 1}* : w has odd parity}.



No More Than One b
L = {w Î {a, b}* : w has no more than one b}.



Checking Consecutive Characters

L = {w Î {a, b}* : 

no two consecutive characters are the same}.

Exercise 



Checking Consecutive Characters

L = {w Î {a, b}* : 

no two consecutive characters are the same}.

What’s the mistake? 



Even Segments of a�s 

L = 
{w Î {a, b}* : every a region in w is of even length}

Exercise



Even Segments of a�s 

L = 
{w Î {a, b}* : every a region in w is of even length}



Even # of a’s and Odd # of b’s

Let L = {w Î {a, b}* : w contains an even 
number of a�s and an odd number of b�s}

Exercise



Even # of a’s and Odd # of b’s



Programming FSMs
L = {w Î {a, b}* : w does not contain the substring 
aab}.

Hint:  Start with a machine for ¬L:



Programming FSMs
L = {w Î {a, b}* : w does not contain the substring 
aab}.

Start with a machine for ¬L:

How must it be changed?



Homework
• Chapter 5

2) 
a) 
e) 
i) (DFSM and NDFSM)

m) (DFSM and NDFSM)
4) all



Definition of an NDFSM
M = (K, S, D, s, A), where:

K is a finite set of states

S is an alphabet

s Î K is the initial state

A Í K is the set of accepting states, and

D is the transition relation.  It is a finite subset of 

(K ´ (S È {e})) ´ K



NDFSM Transitions

Transitions are more complicated:

• “epsilon” transitions, i.e. change state without
reading a character of input

• multiple transitions from a state for a given
character

• no transition for a character from a state, 
i.e. the computation can “block”



Sources of Nondeterminism



Accepting by an NDFSM

M accepts a string w iff there exists some path that 
ends in an accepting state with the entire input 
read/consumed.

The language accepted by M, denoted L(M), is the set 
of all strings accepted by M.

Sometimes simpler and smaller than a DFSM that 
recognizes the same language.



Analyzing Nondeterministic FSMs

Does this FSM accept:
baaba

Remember: we just have to find one accepting path. 



NDFSM Example
L = {w Î {a, b}* : w is made up of all a�s or all b�s}. 

• DFSM?
• NDFSM?



Optional Substrings

L = {w Î {a, b}* : w is made up of an optional a
followed by aa followed by zero or more b�s}. 



Two ways to think about it:

1) Explore a search tree:

2) Follow all paths in parallel (sets of states M could be in)

Analyzing Nondeterministic FSMs



Multiple Sublanguages
L = {w Î {a, b}* : w = aba or |w| is even}.  



The Missing Letter Language



Pattern Matching
L = {w Î {a, b, c}* : $x, y Î {a, b, c}* (w = x abcabb y)}. 

A DFSM:



Pattern Matching
L = {w Î {a, b, c}* : $x, y Î {a, b, c}* (w = x abcabb y)}. 

An NDFSM:



Multiple Patterns
L = {w Î {a, b}* : $x, y Î {a, b}* 

((w = x abbaa y) Ú (w =  x baba y))}.

Exercise 



Multiple Patterns
L = {w Î {a, b}* : $x, y Î {a, b}* 

((w = x abbaa y) Ú (w =  x baba y))}. 



Checking from the End

L = {w Î {a, b}* : 
the fourth to the last character is a}

Exercise



Checking from the End

L = {w Î {a, b}* : 
the fourth to the last character is a}



Homework
• Chapter 5

2) 
a) 
e) 
i) (DFSM and NDFSM)

m) (DFSM and NDFSM)
4) all
5) all
6) f



Dealing with e Transitions

eps(q) = {p Î K : (q, w) |-*M (p, w)}.

eps(q) is the closure of {q} under the relation
{(p, r) :  there is a transition (p, e, r) Î D}.



An Example of eps

eps(q0) = 
eps(q1) =
eps(q2) =
eps(q3) =



An Example of eps

eps(q0) = { q0, q1, q2 }
eps(q1) = { q1, q2 }
eps(q2) = { q2 }
eps(q3) = { q3 }



Simulating an NDFSM

simulateNDFSM (NDFSM M, string w) = 
1. current-state = eps(s).
2. While any input symbols in w remain to be read do:

1. c = get-next-symbol(w).
2. next-state = Æ.
3. For each state q in current-state do:

For each state p such that (q, c, p) Î D do:
next-state = next-state È eps(p).

4. current-state = next-state.
3. If current-state contains any states in A, accept.  Else 

reject.



Nondeterministic and 
Deterministic FSMs

Clearly: {Languages accepted by a DFSM} Í
{Languages accepted by a NDFSM}

More interestingly:

Theorem: For each NDFSM, there is an equivalent DFSM.

HOW?  (look back at “Simulating an NDFSM”)



General Idea
• Sets of states; takes care of:

– Epsilon transitions
– Multiple transitions on same character

• Can take care of no transition situations with trap states
• NOTE: The number of states in the DFSM can grow 

exponentially!



Nondeterministic and 
Deterministic FSMs

Theorem: For each NDFSM, there is an 
equivalent DFSM.

Proof: By construction:

Given a NDFSM   M = (K,  S, D,  s, A), 
we construct     M' = (K', S, d', s', A'), where:

K' = P(K)
s' = eps(s)
A' = {Q Í K : Q Ç A ¹ Æ}

d'(Q, a) = È{eps(p): p Î K and 
(q, a, p) Î D for some q Î Q}



An Algorithm for Constructing the 
Deterministic FSM

1. Compute the eps(q)�s.

2. Compute s' = eps(s). 

3. Compute d'.

4. Compute K' = a subset of P(K).

5. Compute A' = {Q Î K' : Q Ç A ¹ Æ}.



The Algorithm NDFSMtoDFSM
NDFSMtoDFSM (NDFSM M) =   

1. For each state q in KM do:
1.1 Compute eps(q).

2. s' = eps(s) 
3. Compute d': 

3.1 active-states = {s'}.
3.2 d' = Æ.
3.3 While there exists some element Q of active-states for 

which d' has not yet been computed do:
For each character c in SM do:

new-state = Æ.
For each state q in Q do:

For each state p such that (q, c, p) Î D do:
new-state = new-state È eps(p).

Add the transition (Q, c, new-state) to d'.
If new-state Ï active-states then insert it.

4. K' = active-states.
5. A' = {Q Î K' : Q Ç A ¹ Æ }.



Exercise

L = {w Î {a, b}* : w is made up of an optional a
followed by aa followed by zero or more b�s}. 



Homework
• Chapter 5

2) 
a) 
e) 
i) (DFSM and NDFSM)

m) (DFSM and NDFSM)
4) all
5) all
6) f
9) a



Homework
• Chapter 5

2) 
a) 
e) 
i) (DFSM and NDFSM)

m) (DFSM and NDFSM)
4) all
5) all
6) f
9) a



Prove DFSM <-> NDFSM?
• DFSM -> NDFSM?

– Trivial (why?)

• NDFSM -> DFSM?
– Think about it for next time
– Hint:  Prove equivalent computation on any possible 

string of any length


