N
L/

QuickSort

| 74962524679 |

/\

42524 | (79579 |

QuickSort

AN

@ QuickSort on an input

sequence .S with n QuickSort(S)
elements consists of if S.size() <= 1
three steps: return
= Divide: partition S into
two sequences S, and S, last = last item in §
of about n/2 elements (S|, S,) = partition(S, last)
each QuickSori(S,)
= Recurse: recursively sort QuickSort(S,)
S,and S,

s Conquer: depends on
what partition does.

Partition

#® We partition by removing,
in turn, each element y from S
and inserting y into L (less
than the pivor) or G, (greater

than the pivor)

€ Each insertion and removal
takes constant time, so
partitioning takes O(n) time

AN

partition(S, pivot)
LE = empty list
G = empty list
while S.isEmpty == false
y=38.get(0)
S.remove(0)
if y <= pivot
LE.add(y)
else //y> pivot
G.add(y)
return LE and G

QuickSort

AN

@ Divide: take the last element
x as the pivor and partition the
list into

s L, elements <= x
s G, elements > x

@ Recurse: sort Land G
4 Conquer: Nothing to do!

Issue: In-Place?

J \

<

Q=<

In-Place Partitioning (Hoare)

@ Perform the partition using two indices to split S into L
and G.
] k

[32510735927989796 | (pivot =6)

4 Repeat until j and k cross:
= Scan j to the right until finding an element > pivot.
m Scan k to the left until finding an element < pivot.
= Swap elements at indices j and k

4 Then swap the element at index j with the pivot.
:_l k <

[325107[3592][7989796 |

v >

In-Place Partitioning (Hoare)

HOARE-PARTITION(A, p, 1)

1 x <« A[p]
2 i<~ p-—1
3 jJ<«—r+1
4 while TRUE
do repeat j < j — 1
until A[j] < «x
repeat i < i + 1
until A[/] > x
ifi < j
then exchange A[i] < A[/]
else return j

— O \O 00 J O\ Wn

S W W

In-Place Partitioning (Lomuto)

PARTITION(A, p, 1)
x = Alr]
1 =p—1
for j =ptor—1DO
if A[j] <ux

1 =1+1

swap Ali] and Alj]
swap Ali + 1] and A[r]
return ¢ + 1

What's the Running Time?

AN

@ It depends!

¢ On what?

#® Best Case?

» What's the recurrence?
» What's the solution to the recurrence?

® Worst Case?

= What's the recurrence?
» What's the solution to the recurrence?

Best-Case Running Time

@ The best case for quick-sort occurs when the pivot is the median
Both sides of the partition have the same number of elements
@ The running time is exactly like MergeSort:

I'(n)y=2T(n/2)+n

AN

T's size tme
| n [| n
2 ni2 |) [J n

n
20 p/2i cJC) CJO) OO OO .l

@ So, the best-case running time of QuickSort is O(n Ig n)

Worst-Case Running Time

AN

@ The worst case for quick-sort occurs when the pivot is the minimum
or maximum element

One side of the partition has n — 1 elements and the other has 0

The running time is proportional to the sum of the partition times:
n+n-1+...+2+1

@ Thus, the worst-case running time of QuickSort is O(n?)

depth time
0 n []
| n-1 L) []

10

Expected Running Time, Part 1

AN

Consider a recursive call of QuickSort on a sequence of size n
m Good split: the sizes of L and G are each less than or equal to 3n/4
= Bad split: one of L and G has size greater than 3n/4

@ A split is good with probability 1/2
s 1/2 of the possible pivots cause good splits:

[12345678910111213141516 |
H_I\ ~ JH_J

Bad pivots Good pivots Bad pivots

@ Use this to determine how many splits we need and, therefore,
how many levels of recursion we will have

11

/Expected Running Time, Part 2

@

N4
&

& @

What is the most number of levels at which we need to get “good”
splits to get down to an input size of 1?

The "worst good” split is an n/4, 3n/4 split
How many of these do we need to get down to size 1?

(g) n=1 which means that /= Igl(g4'}3)

Probability Fact: The expected number of coin tosses required in
order to get k heads is 2k.

Since we need i “worst good” splits, and the probability of getting a

“good” split is 1/2, the expected number of splits needed is 2i or:

2lgn
lg(4/3)
The amount of work done at all nodes of the same depth is O(n)
Thus, the expected running time of QuickSort is O(n log n)

~ 4.8lgn

12

AN

4 Choosing the last
element as the pivot
can lead to worst-cast
behavior, especially if...

@ Choosing a pivot
randomly can still lead
to worst-case behavior,
but it's much less likely

4 Random pivot is
standard

QuickSort: Random is Better

QuickSort(S)
if S.size() <=1
return

rltem= random item in §
(8, S,) = partition(S, ritem)
QuickSort(S,)
QuickSort(S,)

Power of Randomization

AN

4 Can show that randomized QuickSort runs in
O(n log n) with high probability

@ What if we didn’t choose the pivot randomly?
= Not first or last element
= Median of 3

4 What would be the best possible pivot?

@ Why not use that?

14

QuickSort Tree

AN

@ An execution of QuickSort is depicted by a binary tree

s Each node represents a recursive call of quick-sort and stores
» Unsorted sequence before the execution and its pivot
» Sorted sequence at the end of the execution

m The root is the initial call
s The |leaves are calls on subsequences of size 0 or 1

(74962 5>246709)]

15

Execution Example

AN

#® Pivot selection

[72943761

16

Execution Example (cont.)

AN

@ Partition, recursive call, pivot selection

17

Execution Example (cont.)

Partition, recursive call, base case

18

Execution Example (cont.)

#Recursive call, ..., base case, join

| 72943761]

(

24315123 4]

AN

51 @i

| I 1
| I 1
A ————— L

19

Execution Example (cont.)

#Recursive call, pivot selection

| 72943761]

T T T

24315123 4] [7 9 7

- -

20

Execution Example (cont.)

#Partition, ..., recursive call, base case

| 72943761]
/\
24315123 4] (797]
= oo

21

Execution Example (cont.)

#Join, join

| 72943761 5123467709}

=T e

24315123 4] | 7972 > 729 |
[151] (43 > 3 4 77 959

22

“QuickSort Visualization

Sorting Algorithms

23

https://www.toptal.com/developers/sorting-algorithms

