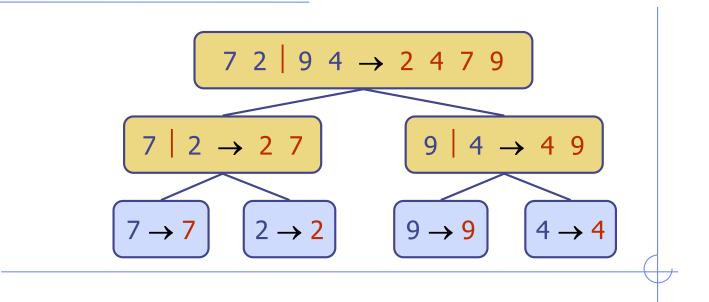
Recurrences



Outline

Recurrence Equations
 Solving Recurrence Equations
 Recursion trees

Iterative substitution

Recurrence Equation Analysis

• The conquer step of MergeSort consists of merging two sorted sequences, each with n/2 elements and takes O(n) steps

- The basis case (n < 2) will take O(1) steps, i.e. constant time.
- If we let T(n) denote the running time of MergeSort on n items:

$$T(n) = 2T(n/2) + n$$

We analyze the running time of MergeSort by finding a closed form solution to the above equation, i.e. a solution that has T(n) only on the left-hand side.

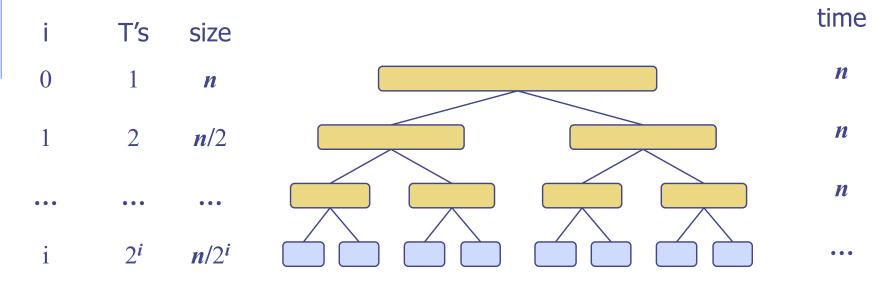
Recursion Tree Method

Draw the recursion tree for the recurrence relation and look for a pattern and then try to prove it is true by induction:

Recursion Tree Method

Draw the recursion tree for the recurrence relation and look for a pattern and then try to prove it is true by induction:

$$T(n) = 2T(n/2) + n$$



Total time = $n \lg n$

Divide-and-Conquer

Iterative Substitution Method

In the iterative substitution technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern.

Iterative Substitution Method

In the iterative substitution technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern.

T(n) = 2T(n / 2) + n= 2(2T(n / 4) + n / 2) + n = 4T(n / 4) + 2n = 8T(n / 8) + 3n = 2⁴T(n / 2⁴) + 4n = ...

 $=2^{i}T(n/2^{i})+in$

• We reach the end of the recursion when $2^{i}=n$. That is, $i = \lg n$.

So, $T(n) = n + n \lg n$

Thus, T(n) is O(n lg n). (Θ(n lg n), if we can argue that the algorithm behaves the same no matter what the input looks like, which, we can.)

Should Prove by Induction

Parallels the recursion process
 We won't do that.

Master Method

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:
1. if f(n) is O(n^{log_b a-ε}), then T(n) is Θ(n^{log_b a})
2. if f(n) is Θ(n^{log_b a}), then T(n) is Θ(n^{log_b a} log₂ n)
3. if f(n) is Ω(n^{log_b a+ε}), then T(n) is Θ(f(n)), provided af(n/b) ≤ δf(n) for some δ < 1.