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Outline
Recurrence Equations
Solving Recurrence Equations
n Recursion trees
n Iterative substitution
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Recurrence Equation 
Analysis

The conquer step of MergeSort consists of merging two sorted 
sequences, each with n/2 elements and takes O(n) steps
The basis case (n < 2) will take O(1) steps, i.e. constant time.
If we let T(n) denote the running time of MergeSort on n items:

We analyze the running time of MergeSort by finding a closed 
form solution to the above equation, i.e. a solution that has T(n) 
only on the left-hand side.

T (n) = 2T (n / 2)+ n
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Recursion Tree Method
Draw the recursion tree for the recurrence relation and look for a 
pattern and then try to prove it is true by induction: 
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Recursion Tree Method
Draw the recursion tree for the recurrence relation and look for a 
pattern and then try to prove it is true by induction: 
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Iterative Substitution Method
In the iterative substitution technique, we iteratively apply the 
recurrence equation to itself and see if we can find a pattern.
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Iterative Substitution Method
In the iterative substitution technique, we iteratively apply the 
recurrence equation to itself and see if we can find a pattern.

We reach the end of the recursion when 2i=n. That is, i = lg n. 
So,
Thus, T(n) is O(n lg n). (Q(n lg n), if we can argue that the 
algorithm behaves the same no matter what the input looks like, 
which, we can.)

T (n) = 2T (n / 2)+n
= 2(2T (n / 4)+ n / 2)+ n
= 4T (n / 4)+ 2n
= 8T (n / 8)+3n
= 24T (n / 24 )+ 4n
= ...
= 2iT (n / 2i )+ in

T (n) = n+ n lgn



Should Prove by Induction

Parallels the recursion process
We won’t do that. L
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Master Method
Many divide-and-conquer recurrence equations have the 
form:

The Master Theorem:
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