CS 2200: Algorithms

Administrative Information

- Course Webpage:
 - http://www.bowdoin.edu/~smajerci/teaching/cs2200/2020spring/index.html
- ◆ Textbook (very optional): Coren, Leiserson, Rivest, and Stein. Introduction to Algorithms, 3rd edition, MIT Press, 2009.
- My Office Hours:
 - Monday, 6:00-8:00 pm, Searles 223
 - Thursday, 11:30 am-1:00 pm, Searles 222
- TAs (Office Hours TBA):
 - Will deBruynKops
 - Adrienne Miller
 - Kayla Snyder

What you can expect from me

- Strategies for designing algorithms
- When to use those strategies
- Tools for analyzing algorithm efficiency
- Techniques for arguing algorithm correctness (a little)
- Specific algorithms
- Improved problem solving skills
- Improved ability to think abstractly

What I will expect from you

- Labs and Homework Problems (25%):
 - Generally after every two classes
 - In-Lab Problems
 - Homework Problems
 - More a learning tool than a testing tool
- 3 Exams (75%):
 - In class
 - Closed book, closed notes
 - except for one 8.5 x 11 sheet of notes (both sides)

Collaboration Levels

- Level 0 (In-Lab and In-Class Problems)
 - No restrictions on collaboration
- Level 1 (Homework Problems)
 - Verbal collaboration without code sharing
 - But many details about what is allowed
- Level 2 (not used in this course)
 - Discussions with TAs only
- Level 3 (Exams)
 - Professor clarifications only

Algorithms is a Difficult Class!

- Much more abstract than Data Structures:
 - emphasis is on designing the solution technique, not implementing a solution
- What to do:
 - Allow plenty of time to read the materials and do the homework
 - Solve all problems (even the optional ones)
 - Go to the study groups (TA hours)
 - Form a group to work with
 - Spaced study

Learning

- What helps you?
- What hinders you?

Algorithms and Programs

- An algorithm is a computational recipe designed to solve a particular problem
- Must be implemented as a program in a particular programming language
- Data structures are critical...
- ...but you already know that.

Making a telephone call to Jill

```
pick up the phone;
dial Jill's number;
wait for person to answer;
talk;
```

Correctness

Waiting at a traffic light

```
if (light is red) {
    wait a while;
    accelerate;
}
```

Definiteness

Looking for an integer >= 0 with property P.

```
i = 0;
foundIt = testForP(i);
while (!foundIt) {
     i++;
     foundIt = testForP(i);
       Finite number of steps
```

Packing for vacation

```
flip coin;
if (heads)
     pack paraglider;
else
     pack scuba gear;
             Predictability
```

Desirable Characteristics

- THEORY suggests/requires:
 - Correctness
 - Definiteness
 - Finiteness
 - Predictability
- Practice suggests:
 - Efficiency
 - Clarity
 - Brevity

An algorithm is:

...a list of **precisely** defined steps that can be done by a computer in a **finite** (and, hopefully, relatively **short**) amount of **time** to **correctly** solve a particular type of **problem**.

Types of Problems

- STRUCTURING: transform input to satisfy Y (SORT)
- CONSTRUCTION: build X to satisfy property Y (ST)
- OPTIMIZATION: find best X satisfying property Y (TSP)
- DECISION: does the input satisfy property Y (SAT)
- APPROXIMATION: find X that almost satisfies property P and has bounded error (TSP)
- RANDOMIZED: make random choices (QuickSort)
- PARALLEL ALGORITHMS (ACO)
- ON-LINE ALGORITHMS (Job Scheduling)

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: Find the maximum element of an array

```
arrayMax(A, n)
currentMax = A[0]
for i = 1 to n - 1
if A[i] > currentMax
currentMax = A[i]
return currentMax
```

Pseudocode Details

- Control flow
 - if...[else...]
 - while...
 - repeat...until ...
 - for...to and for...downto
 - Indentation replaces braces
- Method declaration

```
method (arg [, arg...])
```

- Method call (pass by value)
 method (arg [, arg...])
- Return value return expression

- Java expressions
 - Also: i = j = k
 - Booleans "short circuit"
- NOTE:
 - Will use 0-based indexing, BUT
 - CLRS uses 1-based indexing!
- Usual OOP notation
 - x.f is the attribute f of object x

Sorting

- Pervasive problem
 - Data processing
 - Efficient search
 - Operations research (e.g. shortest jobs first)
 - Event-driven simulation (e.g. what happens first?)
 - Sub-routine for other algorithms (e.g. Kruskal's MST)

Informally

- Bunch of items
- Each has a "key" that allows "<=" comparison
- Put items in ascending (or descending) order according to key comparisons

Sorting

- Bubble Sort
- Selection Sort
- Insertion Sort

What About Efficiency?

- Time
- Space

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get a measure of the actual running time
- Plot the results
- Okay?

Not Okay

- Implementation can be difficult
- Results depend on:
 - quality of the implementation
 - language used
 - computer used
- Can only run on a limited number of inputs, which may not be representative
- Difficult to test on very large inputs
- In order to compare two algorithms, the same hardware and software environments must be used
- So what would you do?

Theoretical Analysis

- Use a pseudocode description of the algorithm instead of an implementation
- Equate running time with the number of instructions executed
- Characterize this measure of running time as a function of the input size, n.
- Advantages:
 - Takes into account all possible inputs
 - Can analyze and compare algorithms independently of hardware and software

The Random Access Machine (RAM) Model

A CPU

Memory cells are numbered and accessing any cell in memory takes unit time.

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent of any programming language
- Exact definition not important
- Each assumed to take a constant amount of time
- Each assumed to take the same constant amount of time

Examples:

- Evaluating a binary expression,e.g. (a + b)
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Really?

- Ignores many things, e.g.
 - Memory hierarchy
 - Processor load
 - "Tricks" like:
 - Pipelining
 - Speculative execution (e.g. branch prediction)
 - Some operations really are a lot more expensive
- But, in practice, it works:
 - It accurately characterizes the rate of growth.
 - It allows us to compare different algorithms.

Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

arraySum(A, n)		
		#operations
sum = 0		1
for $i = 0$ to $n - 1$		3n + 2
sum = sum + A[i]		3 n
return <i>sum</i>		1
	Total	6n + 4

Growth Rate of Running Time

- Algorithm arraySum executes 6n + 4 primitive operations in the worst case (and the best case).
- Changing the hardware/software environment
 - Affects this by a constant factor, but
 - Does not alter the growth *rate*
- The fact that the running time grows at the same rate as the input size is an intrinsic property of algorithm arraySum

Focus on the *Rate* of Growth: Big-O Notation

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 > 0$ such that:

$$f(n) \leq cg(n)$$
 for $n \geq n_0$

- To show this, we need to find a c and n_0 that make the inequality true.
- \bullet Example: 6n + 4 is O(n)
 - $\bullet 6n + 4 \le cn$
 - $6 + 4/n \le c$
 - Pick c = 7 and $n_0 = 4$

More Big-O Examples

- * 7n-2 is O(n) need c>0 and $n_0>0$ such that $7n-2\le cn$ for all $n\ge n_0$ this is true for c=7 and $n_0=2$
- $n^3 + 3n^2 + 5$ is $O(n^2)$
- $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 > 0$ such that $3n^3 + 20n^2 + 5 \le cn^3$ for all $n \ge n_0$ this is true for c = 5 and $n_0 = 20$

Big-O Rules

- If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$. In other words:
 - Drop lower-order terms
 - Drop constant factors
- Use the "smallest" possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "

Two Relative Growth Rate Rules

Any positive polynomial function with degree greater than 0 grows faster than any poly-log function:

$$lg^a n = O(n^b), a > 0, b > 0$$

Any exponential with base greater than 1 grows faster than any polynomial function with degree greater than 0:

$$n^b = O(c^n), b > 0 \text{ and } c > 1$$

Relative Growth Rates

- ♦ lg lg n
- ♦ Ig n
- $lg^2 n$ also written as $(lg n)^2$
- √n
- n
- ♦ n lg n

- ◆ 2ⁿ

Array Sum

Ignoring constant factors makes things easier!

```
arraySum(A, n)

sum = 0

for i = 0 to n - 1

sum = sum + A[i]

return sum

1

Total

#operations

n

n

n

n

1
```

- ightharpoonup Algorithm arraySum runs in O(n) time
- Just counting loop iterations!

Big-Omega

big-Omega

- f(n) is $\Omega(g(n))$ if there is:
 - a constant c > 0, and
 - an integer constant $n_0 > 0$

such that:

 $f(n) \ge c g(n)$ for all $n \ge n_0$

• 7n - 2 is $\Omega(n)$

need c>0 and $n_0>0$ such that $7n-2\geq cn$ for $n\geq n_0$ this is true for c=6 and $n_0=2$

• $3n^3 + 20n^2 + 5$ is $\Omega(n^3)$

need c>0 and $n_0>0$ such that $3n^3+20n^2+5\geq cn^3$ for $n\geq n_0$ this is true for c=3 and $n_0=20$

Big-Theta

- big-Theta (big-O and big-Omega)
 - f(n) is $\Theta(g(n))$ if there are:
 - constants c' > 0 and c'' > 0, and
 - an integer constant $n_0 > 0$

such that:

$$c' g(n) \le f(n) \le c'' g(n)$$
 for all $n \ge n_0$

- Notice that the two constants, c' and c'', can be different, but n_0 must be the same for both. Just use the max!
- 7n 2 is $\Omega(n)$

Already did it!
$$c' = 6$$
, $c'' = 7$, $n_0 = 2$

• $3n^3 + 20n^2 + 5$ is $\Omega(n^3)$

Already did it!
$$c' = 3$$
, $c'' = 5$, $n_0 = 20$

Intuition for Asymptotic Notation

big-O

- f(n) is O(g(n)) if f(n) is asymptotically **less than or equal** to g(n)
- usually for upper bound ("worst case")

big-Omega

- f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)
- usually for lower bound ("best case")

big-Theta

- f(n) is $\Theta(g(n))$ if f(n) is asymptotically **equal** to g(n)
- when the lower bound is the same as the upper bound

Example Uses of the Relatives of Big-O

■ $5n^2$ is Ω(n)Is $5n^2 \ge c$ **n** for some **c** and all $n \ge n_0$? let **c** = 1 and n_0 = 1

Is $5n^2$ is $\Omega(n^2)$ Is $5n^2 \ge c n^2$ for some c and all $n \ge n_0$? let c = 5 and $n_0 = 1$

Is $5n^2$ is $O(n^2)$ Is $5n^2 \le c n^2$ for some c and all $n \ge n_0$? let c = 5 and $n_0 = 1$

■ So $5n^2$ is $\Theta(n^2)$

Asymptotic Analysis is Powerful

An $O(n^{4/3}log n)$ algorithm to test a conjecture about pyramid numbers ran about 30,000 times faster than an $O(n^2)$ algorithm at $n = 10^9$, finishing in 20 minutes instead of just over a year.

Asymptotic Analysis is Powerful

- In a race between two algorithms to solve the maximum-sum subarray problem:
 - A $\Theta(n^3)$ algorithm was implemented in tuned C code on a 533MHz Alpha 21164 (this was 2000...)
 - A ⊕(n) algorithm was implemented in interpreted Basic on a 2.03 Radio Shack TRS-80 Model II
- The winner?
 - The horribly implemented, but asymptotically faster, algorithm started beating the beautifully implemented algorithm at n = 5,800.
 - At n = 10,000, the $\Theta(n^3)$ algorithm took 7 days compared to 32 minutes for the $\Theta(n)$ algorithm.

But wait a minute....

- Is the focus on large problems misguided?
- Do we really not care about large constants?
- Isn't focusing on the worst-case too pessimistic?
- What about practical issues (e.g. cache effects)?

Experimental Algorithmics

- The theoretical approach guarantees generality but lacks specificity.
- The empirical approach provides specificity, but the results are hard to generalize.
- "Experimental algorithmics represents a third approach that treats algorithms as laboratory subjects, emphasizing control of parameters, isolation of key components, model building, and statistical analysis."
- In other words, don't just implement the algorithm and measure execution time.

How Efficient Are Our Sorting Algorithms?

- Bubble Sort
 - worst case?
 - best case?
- Selection Sort
 - worst case?
 - best case?
- Insertion Sort
 - worst case?
 - best case?

Algorithm Design Principle

Sometimes we can devise a new (possibly better) algorithm by reallocating our computational efforts.

Reallocate Computational Effort: Example 1: Sorting

- Selection Sort
 - Picking next element to place is harder (always)
 - Placing it is easier
- Insertion Sort
 - Picking next element to place is easier
 - Placing it is harder (but only sometimes!)

Reallocate Computational Effort: Example 2: Searching

- Unsorted list
 - Easy to add items
 - Much harder to find an item
- Sorted list
 - Extra effort to add items (need to keep sorted)
 - Much easier to find an item