Minimum Spanning Trees
(CLRS 23)
Laura Toma, csci2200, Bowdoin College

1 The problem

Given a connected, undirected graph G = (V, E), a subset of edges of G such that they connect all
vertices in G and form no cycles is called a spanning tree (ST) of G.

Any undirected, connected graph has a spanning tree. If the graph has more than one connected
component, each component will have a spanning tree (and the union of these trees will form a
spanning forest for the graph). The spanning tree of G is not unique.

Question: How would you go about finding a spanning tree of a (connected and undirected)
graph G?
Answer: Run BFS or DFS; the resulting BFS-tree and DFS-tree are spanning trees of G.

The problem becomes more interesting when the graph is weighted: assume each edge (u,v)
has weight w(u,v). In this case, a spanning tree T will have a weight which is defined as the sum
of the weights of the edges in the tree:

w(T) = Z w(u,v)
(u,w)eT

Of all possible spanning trees of GG, we would like to find one of minimum total weight. This is
called the minimum spanning tree (MST) of G. Note that we use minimum spanning tree as short
for minimum weight spanning tree.

Example:

o Weight of MST is 4 +8+7+9+24+4+1+2=37

e Note: MST is not unique: e.g. (b,c) can be exchanged with (a, h)

The MST problem is considered one of the oldest, fundamental problems in graph algorithms. A
spanning tree is essentially the “smallest” possible sub-graph that still keeps the same connectivity
as the original graph. When edges have weights, we naturally want the spanning tree of minimum
total weight. For example, think about connecting cities with minimal amount of wire or roads
(cities are vertices, weight of edges are distances between city pairs). Also, network design in
general (telephones, electrical, TV cable, road networks).

2 Computing the MST: bouncing ideas

e Draw a small graph and try to find the MST.
e How would you approach computing an MST?

e Does it have optimal sub-structure? How would you go about arguing that it has optimal
substructure? Can you express finding an MST recursively?

e Another way to think about it: each vertex in G will have at least one incident edge in the
MST. Can you say anything about this edge?

3 Properties of MST

To keep things simple, we’ll assume that the edge weighst are distinct; that is, for any pair of edges
e, €', we have w(e) # w(e’). This guarantees that the MST is unique. Without this condition, there
may be several minimum spanning trees (e.g. when all edges have weight 1, all spanning trees are
minimum spanning trees).

The cut theorem: For any set S of vertices in a graph G = (V, E), let e = (u, v) be the
lightest edge with exactly one endpoint in S. Then e must be in the MST.

Note: For any set S, the partition of V into (S,V — S) is referred to as a cut, and the edges
with one one endpoint in S and the other one in V' — S are called edges that cross the cut.

Proof: Let T be a MST of G, let S be a set of vertices and let (u,v) be the lightest edge that
crosses the cut. If T' contains edge e = (u,v), then we are done. If T' does not contain e = (u,v),
then:

e Because T is a tree, there is a unique path in 7" between any two nodes and in particular
between wu, v.

e Because u is on one side of the cut and v is on the other, this path must contain at least an
edge (z,y) € T crossing the cut.

e When adding e = (u,v) to T, this path and e form a cycle.
e If we remove edge (x,y) from T and add e instead, then:

o I'"=T— (z,y) + (u,v) is a spanning tree; and

e We know that e is the lightest edge that crosses the cut, therefore w(u,v) < w(z,y)
e This means that 77 must have smaller weight than T.

e This is not possible, because T is the MST.

e Therefore it is not possible that 7" does not contain e = (u, v).

Thus if the weights are distinct, the lightest edge that crosses the cut must be in the MST,
otherwise we get a contradiction.

If the edge weights are not distinct,the cut theorem can be stated as: For any set S of vertices
in a graph G = (V, E), let e = (u,v) be the lightest edge with exactly one endpoint in S. There
exists an MST that contain e.

Proof: As above, we know that w(u,v) < w(z,y) and w(T") < w(T) therefore since T is an

MST, it must be that 7/ must have the same weight as T. T" is also a MST, and thus there is a
MST containing 7" and e.

4 Generic MST algorithm

The Cut Theorem allows us to describe a very abstract greedy algorithm for MST:

T=10
While |T| < |V| — 1 DO

Find cut S respecting T //i.e. T is on one side of the cut

Find smallest edge e crossing S

T=TU{e}

5 Kruskal and Prim MST algorithms at a glance

The two classical algorithms for computing MST are Kruskal’s and Prim’s algorithms. They both
have same running time complexity, and they are both greedy algorithms, but they use comple-
mentary approaches:

e Kruskal’s algorithms: Start with a T consisting of all vertices but no edges. Consider the
edges in (G in increasing order of weight. Add edge e to T unless doing so would create a
cycle.

This corresponds to growing the tree from a forest of V' disconnected vertices. Add one edge
at a time, joining two trees in the forest together. Each join reduces the number of connected
components in the forest by one.

e Prim’s algorithm: Start with an empty 7', and an arbitrary vertex v. Grow T one edge at a

time: at each step, add to T' the edges of minimum weight that has exactly one endpoint in
T.

This grows a tree one edge at a time. The current tree is always connected but only covers a
part of the vertices.

Both Prim’s and Kruskal’s algorithms follow the abstract algorithm and their correctness follows
from the cut theorem by chosing a suitable cut:

e Prim’s: The cut is (T, V —T), that is, the current tree on one side, and the remaining vertices
on the other. At each point the algorithm adds the minimum edge crossing the cut, which,
by the cut theorem, we know must be part of an MST.

e Kruskal’s: When adding edge (u,v) chose a cut that has the vertices in the set of u on one
side and the vertices in the set of v on the other. Edge e is the smallest edge that crosses the
cut and thus by the cut theorem, we know must be part of an MST.

6 PRIM’s algorithm

GeneralL IDEA:
e Start with spanning tree containing arbitrary vertex r and no edges

e Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current
spanning tree with a vertex not in the tree

Implementation:

e To find minimal edge connected to current tree we maintain a priority queue on vertices not
in the tree. The key/priority of a vertex v is the weight of minimal weight edge connecting v
to the tree. (We maintain pointer from adjacency list of v to v in the priority queue).

e For each node v maintain visit(v) such that edge (v, visit(v)) is the best edge connecting v
to the current tree.

PRIM(r)

/* initialize */

For each vertex u € V,u # r DO: INSERT(PQ, u, o)
INSERT(PQ,r,0), visit(r) = NULL

/* main loop */

WHILE PQ not empty DO

u = DELETE-MIN(PQ)
For each (u,v) € E DO

IF v € PQ and w(u,v) < key(v):
visit[v] = u

DECREASE-KEY(PQ, v, w(u,v))

Output edges (u,visit(u)) as part of MST.

On the example graph, the greedy algorithm would work as follows (starting at vertex a):

Prim’s analysis:

V| INSERT’s
While loop runs |V| times = we perform |V| DELETEMIN’s
We perform at most one DECREASE-KEY for each of the |E| edges

If use a heap as pqueue, inserts, delete-min and decrease-key run in O(lgV) = O((|V] +
[E]) log|V']) = O(|E|log V) time.

7 Kruskal’s Algorithm

General idea:
e Start with a forest consisting of |V| trees, each one consisting of one vertex

e Consider edges F in increasing order of their weight; add an edge if it connects two trees, ie
if it does not create cycles.

Example:

To implement Kruskal’s idea, we need to a structure that maintains the “partial” trees and is
able to support the following operations: (a) initialize a tree as consisting of a single vertex; (b)
are two vertices in the same tree?; and (c) join two trees together.

Abstracting further, we can think of each tree as a set of vertices. We need a data structure
to store each set of vertices so that we are able to: (a) create a set consisting of one vertex; (b)
determine of two vertices are in the same set; (c) join two sets.

This type of structure is referred to as an union-find data structure and its operations are
referred to as:

e MAKE-SET(v): Create set consisting of v
e UNION-SET(u,v): Unite set containing v and set containing v
e FIND-SET(u): Return unique representative for set containing u

We can re-write Kruskal’s algorithm to use a union-find data structure as follows:

KRUSKAL

T=10

FOR each vertex v € V: MAKE-SET(v)

Sort edges of E in increasing order by weight
FOR each edge e = (u,v) € E in order DO

IF FIND-SET(u) # FIND-SET(v) THEN

T=TU/{e}

UNION-SET(u, v)

Kruskal’s analysis:

e We use O(|E|log |E|) = O(|E|log|V|) time to sort edges and we perform |V| MAKE-SET,
|V| — 1 UNION-SET, and 2|E| FIND-SET operations.

e We will discuss a simple solution to the Union-Find problem such that MAKE-SET and FIND-
SET take O(1) time and UNION-SET takes O(log V') time amortized. With this implementa-
tion Kruskal’s algorithm runs in time O(|E|log |E| + |V|log|V]) = O((|E| + |V|)log |E|) =
O(|E|log|V]) like Prim’s algorithm.

8 Union-Find

Kruskal’s MST algorithm can be expressed in terms of an union-find data structure. As it turns out
this is a general-purpose structure that has other applications. Generally speaking the Union-Find
problem is the following: We want to provide a data structure to maintain a set of elements under
the following operations:

e MAKE-SET(v): Create set consisting of v
e UNION-SET(u,v): Unite set containing v and set containing v

e FIND-SET(u): Return unique representative for set containing u

8.1 Simple solution

Perhaps the simplest idea that comes to mind is to maintain elements in same set as a linked list
with each element having a pointer to the first element in the list (unique representative). Example:

Sets
1 2
@
10 (3
6 1 7

Representation

85412 1197

@”

e MAKE-SET(v): Make a list with one element = O(1) time
e FIND-SET(u): Follow pointer and return unique representative = O(1) time

e UNION-SET(u,v): Link first element in list with unique representative FIND-SET(u) after last
element in list with unique representative FIND-SET(v) = O(|V]) time (as we have to update
all unique representative pointers in list containing u)

With this simple solution the |V| — 1 UNION-SET operations in Kruskal’s algorithm may take
O(|V]?) time.
8.2 Improved solution:

We can improve the performance of UNION-SET with a very simple modification:

Always link the smaller list after the longer list (update the pointers of the smaller list) ‘

If you think: this is simple, you are right! As we’ll show below, such a beautifully simple
and intuitive idea results in an amortized bound of O(log|V|) per UNION-SET, amortized. This is
algorithmic elegance at its best!

Nej

Why is this efficient?
e One UNION operation takes time proportional to number of pointer changes it needs to do

e One UNION-SET operation can still take O(|V|) time (It is possible that we join a list of V/2
vertices to a list of V/2 vertices, which requires V/2 pointer updates).

e Kruskal’s algorithm performs |V| — 1 UNION operations in total
e The trick is to think over all the UNION operations performed by Kruskal’s algorithm.

e Consider element wu:

After pointer for u is updated, u belongs to a list of size at least double the size of the list it
was in before the union

4

After k pointer changes, u is in list of size at least 2F

4

Since the size of the largest set is |V, the pointer of u can be changed at most log |V times.

e In other words, over the course of all the UNION operations, each element can have its pointer
changed only O(lg V) times.

e This means that O(V') UNION operations will take O(|V|log |V'|) time altogether in the worst
case

Notes: With improvement, Kruskal’s algorithm runs in time O(|E|log|E| + |V]log|V|) =
O((|E| +|V])log |E|) = O(|E|log |V]) like Prim’s algorithm.

Note: Kruskal and Prim’s algorithms can be improved by plugging in improved Union-Find
and priority queue data structures; however even when using an improved union-find structure
Kruskal’s algorithm stays at O(|E|log|V]) and its running time is dominated by sorting.

9 History and state-of-the-art

MST is considered by some the oldest open problem in computer science. Improvements of
O(|E|1glg |V]) were given in the mid seventies, followed by more improvements.

In 1995 Karger, Klein and Tarjan described a randomized algorithm for computing an MST in
expected O(V + E) time. The algorithm was a breakthrough.

Subsequently, it was shown that if the edge costs are integers it is possible to find the MST
with a deterministic algorithm in worst-case linear time.

Achieving a similar result (MST in O(V + E) time) with a deterministic algorithm and without
making any assumption on the edges weights has been a long-standing open problem.

At present, the best upper bound for computing MST is O(|E|a(|E|,|V])) where a() is the
inverse Ackerman function; a() is a very slowly growing function, in practice a constant. This result
is due to Bernard Chazelle, from Princeton, and dates back to 1999. It does not resolve the open
question, but it takes a big step and comes pretty close, and, perhaps more importantly, it introduces
a non-greedy approach to MST (the idea is to compute a sub-optimal tree and progressively refine
it).

10

