Divide-and-conquer
(CLRS 4.2)

Laura Toma, csci2200, Bowdoin College

D&C s a powerful technique for solving problems:

Input: Problem P

To Solve P:
1. Divide P into smaller problems P, Py
2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P;, P, into solution for P.

Matrix Multiplication

Let X and Y be two n X n matrices

T11 T12 o Tin
To1 T2 - Tin
X =49 @31 x32 -+ T
Tnl ITn2 - Tnn

We want to compute Z = X - Y, where z;; = > 11 Xii - Vi

Problem: Given two matrices of size n by n, come up with an algorithm to compute the product.

e The straightfoward method uses = n? - n = ©(n?) operations

e Can we do better? That is, is it possible to multiply two matrices faster than ©(n3)?

e This was an open problem for a long time... until Strassen came up with an algorithm in

1969. The idea is to use divide-and-conquer.

Matrix multiplication with divide-and-conquer

e Let’s imagine that n is a power of two. We can view each matrix as consisting of 2x2=4

n/2-by-n/2 matrices.

A B E F
e Then we see that their product X - Y can be written as:
A B| | E F|_ (A-E+B-G) (A-F+B-H)
C D G H| | (C-E+D-G) (C-F+D-H)
e The above naturally leads to divide-and-conquer solution:

— Divide X and Y into 8 sub-matrices A, B, C, D,E, F,G, H.
— Compute 8 n/2-by-n/2 matrix multiplications recursively.

— Combine results (by doing 4 matrix additions) and copy the results into Z.
e ANALYSIS: Running time of algorithm is given by T'(n) = 8T (n/2) +0(n?) = T'(n) = O(n?)

e Cool idea, but not so cool result......since we already discussed a (simpler /naive) O(n3) algo-
rithm!

e Can we do better?

Strassen’s divide-and-conquer

e Strassen’s algorithm is based on the following observation:

The recurrence
T(n) = 8T(n/2) + O(n?) = T(n) = O(n?)

while the recurrence
T(n)="7T(n/2)+ @(n2) =T(n)= @(nlg7)

e Strassen foud a way to compute only 7 products of n/2-by-n/2 matrices

e With same notation as before, we define the following 7 n/2-by-n/2 matrices:

S; = (B—-D)-(G+H)

S, = (A+D)-(E+H)
Sy = (A=C)-(E+F)
Ss = (A+B)-H
S5 = A-(F—H)
Ss = D-(G—E)

S7 = (C—I—D)-E

Strassen observed that we can write the product Z as:
7 A B ‘ EF F _ (S1+ S2 — Sy + Sp) (S4+S5)

C D G H (SG+S7) (52—|—53+S5—S7)
For e.g. let’s test that S¢ + Sy isreally C-E+ D -G

Ss+S = D-(G—E)+(C+D)-E
— DG - DE+CE+ DE
= DG +CE

This leads to a divide-and-conquer algorithm:

— Divide X and Y into 8 sub-matrices A, B, C, D, E, F,G, H.

— Compute S1, 53,53, ..., 97. This involves 10 matrix additions and 7 multiplications re-
cursively.

— Compute S7 + S92 — S4 + S, ... and copy them in Z. This step involves only addi-
tions/subtractions of n/2-by-n/2 matrices.

ANALYSIS: T(n) = 7T(n/2) + ©(n?), with solution O(n'87).

Lets solve the recurrence using the iteration method

T(n) 7T (n/2) + n?

_ n2'@((2772)10gn—1) | 7logn
Zlogn
(22)logn
Zlogn
n2

_ n2@()+7logn

= n?-9(
_ @(7logn)

) + 7logn

— Now we have the following:

logz n
— 7 log7 2
— (710g7 ”)(1/ log; 2)

logo 7
— n logo 2

710g n

nlog 7

So the solution is T'(n) = O(n'87) = ©(n281)

e Note:

— We are ’hiding’ a much bigger constant in ©() than before.
2.376..) (

Currently best known bound is O(n Coppersmith and Winograd’78).

Lower bound is (trivially) (n?).

— Big open problem!!

Strassen’s algorithm has been found to be efficient in practice once n is large enough.
For small values of n the straightforward cubic algorithm is used instead. The crossover
point where Strassen becomes more efficient depends from system to system.

