Traversing a graph: BFS and DF'S
(CLRS 22.2, 22.3)
Laura Toma, csci2200, Bowdoin College

The most fundamental graph problem is traversing the graph.

There are two standard (and simple) ways of traversing all vertices/edges in a graph in a
systematic way: BFS and DFS.

Most fundamental algorithms on graphs (e.g finding cycles, connected components) are ap-
plications of graph traversal.

Like finding the way out of a maze (maze = graph). Need to be careful to not get stuck in
the graph, so we need to mark vertices that we’ve encountered; and we need to make sure we
don’t skip anything.

Basic idea: over the course of the traversal a vertex progresses from undiscovered, to discov-
ered, to completely-discovered:

— undiscovered: initially (WHITE)
— discovered: after it’s encountered, but before it’s completely explored (GRAY)
— completely explored: the vertex after we visited all its incident edges (BLACK)

We start with a single vertex and evaluate its outgoing edges:
— If an edge goes to an undiscoverd vertex, we mark it as discovered and add it to the list
of discovered vertices.
— If an edge goes to a completely explored vertex, we ignore it (we’ve already been there)
— If an edge goes to an already discovered vertex, we ignore it (it’s on the list).

Analysis: Each edge is visited once (for directed graphs), or twice (undirected graphs — once
when exploring each endpoint) = O(|V| + |E|)

Depending on how we store the list of discovered vertices we get BFS or DFS:

— queue: explore oldest vertex first. The exploration propagates in layers form the starting
vertex.

— stack: explore newest vertex first. The exploration goes along a path, and backs up only
when new unexplored vertices are not available.

Breadth-first search (BFS)

e We use a queue) to hold all gray vertices—vertices we have seen but are still not done with.

e We remember from which vertex a given vertex v is colored gray —i.e. the node that discovered
v first; this is called parent[v].

e We also maintain d[v], the length of the path from s to v. Initially d[s] = 0.
BFS(s)

color[s] = gray

d[s] =0

ENQUEUE(Q, s)

WHILE @ not empty DO

DEQUEUE(Q, u)
FOR each v € adj[u] DO
IF color[v] = white THEN
color[v] = gray
dv] =d[u] +1
parent[v] = u //(u,v) is a tree-edge
ENQUEUE(Q, v)
// ELSE v is not white, (u,v) is non-tree edge

color[u] = black

e Example (for directed graph):
a s d f

e If graph is not connected we start the traversal at all nodes until the entire graph is explored.

BFS(G)

FOR each vertex u € V DO
IF color[u] = white THEN BFS(u)

Properties of BFS

e During BFS(v) each edge in G is classified as:

— tree edge: an edge leading to an unmarked vertex

— non-tree edge: an edge leading to a marked vertex.

e Each vertex, except the source vertex s, has a parent; these edges (v, parent[v]) define a tree,
called the BFS-tree.

e Lemma: On a directed graph, BFS(s) reaches all vertices reachable from s. On an undi-
rected graph, BFS(s) visits all vertices in the connected component (CC) of s, and the BFS-
tree obtained is a spanning tree of CC(s).

Proof idea: Assume by contradiction that there is a vertex v in CC(u) that is not reached by
BFS(u). Since u, v are in same CC, there must exist a path vo = u, vy, ve, ..., Uk, v connecting
u to v. Let v; be the last vertex on this path that is reached by BFS(u) (v; could be
u). When exploring v;, BFS must have explored edge (v;, vit+1),..., leading eventually to wv.
Contradiction.

e Lemma: BFS(s) runs in O(|V.| + |E¢|), where V., E. are the number of vertices and edges
in CC(s). When run on the entire graph, BFS(G) runs in O(|V| + |E|) time. Put differently,
BFS runs in linear time in the size of the graph.

Proof: It explores every vertex once. Once a vertex is marked, it’s not explored again. It
traverses each edge twice. Overall, O(|V| + |E|).

e Lemma: Let = be a vertex reached in BFS(s). Its distance d[z] represents the the shortest
path from s to x in G.

Proof idea: All vertices v which are one edge away from s are discovered when exploring s and
are set with d[v] = 1. Similarly all vertices that are one edge away from vertices at distance
1, are explored and their distance set to d = 2. And so on. Make this formal with induction.

e Lemma: For undirected graphs, for any non-tree edge (x,y) in BFS(v), the level of x and y
differ by at most one.

Proof idea: Observe that, at any point in time, the vertices in the queue have distances that
differ by at most 1. Let’s say x comes out first from the queue; at this time y must be already
marked (because otherwise (x,y) would be a tree edge). Furthermore y has to be in the
queue, because, if it wasn’t, it means it was already deleted from the queue and we assumed
x was first. So y has to be in the queue, and we have |d(y) — d(z)| < 1 by above observation.

Depth-first search (DFS)

e Use stack instead of queue to hold discovered vertices:
— We go “as deep as possible”, go back until we find first unexplored adjacent vertex
e Useful to compute “start time” and “finish time” of vertex u

— Start time d[u]: time when a vertex is first visited.

— Finish time f[u]: time when all adjacent vertices of u have been visited.

e We can write DF'S iteratively using the same algorithm as for BFS but with a STACK instead
of a QUEUE, or, we can write a recursive DFS procedure

DFS(u)

color[u] = gray

d[u] = time
time = time + 1
FOR each v € adj[u] DO
IF color[v] = white THEN
parent[v] = u
DFS(v)
color[u] = black
flu] = time

time = time + 1

e Example:

a 1/
LS 2
(Y\w l M\
L/ N N NS
b c e g

DF'S Properties:

e DFS(u) reaches all vertices reachable from u. On undirected graphs, DFS(u) visits all vertices
in CC(u), and the DFS-tree obtained is a spanning tree of CC(u).

e Analysis: DFS(s) runs in O(|V;|+ |E¢|), where V., E, are the number of vertices and edges in
CC(s) (reachable from s, for directed graphs). When run on the entire graph, DFS(G) runs
in O(|V| + |E|) time. Put differently, DFS runs in linear time in the size of the graph.

e As with BFS (v, parent[v]) forms a tree, the DFS-tree

e Nesting of descendants: If u is descendent of v in DFS-tree then d[v] < d[u] < flu] < flv].

