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The most fundamental graph problem is traversing the graph.

There are two standard (and simple) ways of traversing all vertices/edges in a graph in a
systematic way: BFS and DFS.

Most fundamental algorithms on graphs (e.g finding cycles, connected components) are ap-
plications of graph traversal.

Like finding the way out of a maze (maze = graph). Need to be careful to not get stuck in
the graph, so we need to mark vertices that we’ve encountered; and we need to make sure we
don’t skip anything.

Basic idea: over the course of the traversal a vertex progresses from undiscovered, to discov-
ered, to completely-discovered:

— undiscovered: initially (WHITE)
— discovered: after it’s encountered, but before it’s completely explored (GRAY)
— completely explored: the vertex after we visited all its incident edges (BLACK)

We start with a single vertex and evaluate its outgoing edges:
— If an edge goes to an undiscoverd vertex, we mark it as discovered and add it to the list
of discovered vertices.
— If an edge goes to a completely explored vertex, we ignore it (we’ve already been there)
— If an edge goes to an already discovered vertex, we ignore it (it’s on the list).

Analysis: Each edge is visited once (for directed graphs), or twice (undirected graphs — once
when exploring each endpoint) = O(|V| + |E|)

Depending on how we store the list of discovered vertices we get BFS or DFS:

— queue: explore oldest vertex first. The exploration propagates in layers form the starting
vertex.

— stack: explore newest vertex first. The exploration goes along a path, and backs up only
when new unexplored vertices are not available.



Breadth-first search (BFS)

e We use a queue ) to hold all gray vertices—vertices we have seen but are still not done with.

e We remember from which vertex a given vertex v is colored gray —i.e. the node that discovered
v first; this is called parent[v].

e We also maintain d[v], the length of the path from s to v. Initially d[s] = 0.
BFS(s)

color[s] = gray

d[s] =0

ENQUEUE(Q, s)

WHILE @ not empty DO

DEQUEUE(Q, u)
FOR each v € adj[u] DO
IF color[v] = white THEN
color[v] = gray
dv] =d[u] +1
parent[v] = u //(u,v) is a tree-edge
ENQUEUE(Q, v)
// ELSE v is not white, (u,v) is non-tree edge

color[u] = black

e Example (for directed graph):
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e If graph is not connected we start the traversal at all nodes until the entire graph is explored.

BFS(G)

FOR each vertex u € V DO
IF color[u] = white THEN BFS(u)




Properties of BFS

e During BFS(v) each edge in G is classified as:

— tree edge: an edge leading to an unmarked vertex

— non-tree edge: an edge leading to a marked vertex.

e Each vertex, except the source vertex s, has a parent; these edges (v, parent[v]) define a tree,
called the BFS-tree.

e Lemma: On a directed graph, BFS(s) reaches all vertices reachable from s. On an undi-
rected graph, BFS(s) visits all vertices in the connected component (CC) of s, and the BFS-
tree obtained is a spanning tree of CC(s).

Proof idea: Assume by contradiction that there is a vertex v in CC(u) that is not reached by
BFS(u). Since u, v are in same CC, there must exist a path vo = u, vy, ve, ..., Uk, v connecting
u to v. Let v; be the last vertex on this path that is reached by BFS(u) (v; could be
u). When exploring v;, BFS must have explored edge (v;, vit+1),..., leading eventually to wv.
Contradiction.

e Lemma: BFS(s) runs in O(|V.| + |E¢|), where V., E. are the number of vertices and edges
in CC(s). When run on the entire graph, BFS(G) runs in O(|V| + |E|) time. Put differently,
BFS runs in linear time in the size of the graph.

Proof: It explores every vertex once. Once a vertex is marked, it’s not explored again. It
traverses each edge twice. Overall, O(|V| + |E|).

e Lemma: Let = be a vertex reached in BFS(s). Its distance d[z] represents the the shortest
path from s to x in G.

Proof idea: All vertices v which are one edge away from s are discovered when exploring s and
are set with d[v] = 1. Similarly all vertices that are one edge away from vertices at distance
1, are explored and their distance set to d = 2. And so on. Make this formal with induction.

e Lemma: For undirected graphs, for any non-tree edge (x,y) in BFS(v), the level of x and y
differ by at most one.

Proof idea: Observe that, at any point in time, the vertices in the queue have distances that
differ by at most 1. Let’s say x comes out first from the queue; at this time y must be already
marked (because otherwise (x,y) would be a tree edge). Furthermore y has to be in the
queue, because, if it wasn’t, it means it was already deleted from the queue and we assumed
x was first. So y has to be in the queue, and we have |d(y) — d(z)| < 1 by above observation.



Depth-first search (DFS)

e Use stack instead of queue to hold discovered vertices:
— We go “as deep as possible”, go back until we find first unexplored adjacent vertex
e Useful to compute “start time” and “finish time” of vertex u

— Start time d[u]: time when a vertex is first visited.

— Finish time f[u]: time when all adjacent vertices of u have been visited.

e We can write DF'S iteratively using the same algorithm as for BFS but with a STACK instead
of a QUEUE, or, we can write a recursive DFS procedure

DFS(u)

color[u] = gray

d[u] = time
time = time + 1
FOR each v € adj[u] DO
IF color[v] = white THEN
parent[v] = u
DFS(v)
color[u] = black
flu] = time

time = time + 1

e Example:
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DF'S Properties:

e DFS(u) reaches all vertices reachable from u. On undirected graphs, DFS(u) visits all vertices
in CC(u), and the DFS-tree obtained is a spanning tree of CC(u).

e Analysis: DFS(s) runs in O(|V;|+ |E¢|), where V., E, are the number of vertices and edges in
CC(s) (reachable from s, for directed graphs). When run on the entire graph, DFS(G) runs
in O(|V| + |E|) time. Put differently, DFS runs in linear time in the size of the graph.

e As with BFS (v, parent[v]) forms a tree, the DFS-tree

e Nesting of descendants: If u is descendent of v in DFS-tree then d[v] < d[u] < flu] < flv].



