
Traversing a graph: BFS and DFS
(CLRS 22.2, 22.3)

Laura Toma, csci2200, Bowdoin College

The most fundamental graph problem is traversing the graph.

• There are two standard (and simple) ways of traversing all vertices/edges in a graph in a
systematic way: BFS and DFS.

• Most fundamental algorithms on graphs (e.g finding cycles, connected components) are ap-
plications of graph traversal.

• Like finding the way out of a maze (maze = graph). Need to be careful to not get stuck in
the graph, so we need to mark vertices that we’ve encountered; and we need to make sure we
don’t skip anything.

• Basic idea: over the course of the traversal a vertex progresses from undiscovered, to discov-
ered, to completely-discovered:

– undiscovered: initially (WHITE)

– discovered: after it’s encountered, but before it’s completely explored (GRAY)

– completely explored: the vertex after we visited all its incident edges (BLACK)

• We start with a single vertex and evaluate its outgoing edges:

– If an edge goes to an undiscoverd vertex, we mark it as discovered and add it to the list
of discovered vertices.

– If an edge goes to a completely explored vertex, we ignore it (we’ve already been there)

– If an edge goes to an already discovered vertex, we ignore it (it’s on the list).

• Analysis: Each edge is visited once (for directed graphs), or twice (undirected graphs — once
when exploring each endpoint) ⇒ O(|V |+ |E|)

• Depending on how we store the list of discovered vertices we get BFS or DFS:

– queue: explore oldest vertex first. The exploration propagates in layers form the starting
vertex.

– stack: explore newest vertex first. The exploration goes along a path, and backs up only
when new unexplored vertices are not available.

1

Breadth-first search (BFS)

• We use a queue Q to hold all gray vertices—vertices we have seen but are still not done with.

• We remember from which vertex a given vertex v is colored gray – i.e. the node that discovered
v first; this is called parent[v].

• We also maintain d[v], the length of the path from s to v. Initially d[s] = 0.

BFS(s)

color[s] = gray

d[s] = 0

ENQUEUE(Q, s)

WHILE Q not empty DO

DEQUEUE(Q, u)

FOR each v ∈ adj[u] DO

IF color[v] = white THEN

color[v] = gray

d[v] = d[u] + 1

parent[v] = u //(u,v) is a tree-edge

ENQUEUE(Q, v)

// ELSE v is not white, (u,v) is non-tree edge

color[u] = black

• Example (for directed graph):

• If graph is not connected we start the traversal at all nodes until the entire graph is explored.

BFS(G)

FOR each vertex u ∈ V DO

IF color[u] = white THEN BFS(u)

2

Properties of BFS

• During BFS(v) each edge in G is classified as:

– tree edge: an edge leading to an unmarked vertex

– non-tree edge: an edge leading to a marked vertex.

• Each vertex, except the source vertex s, has a parent; these edges (v, parent[v]) define a tree,
called the BFS-tree.

• Lemma: On a directed graph, BFS(s) reaches all vertices reachable from s. On an undi-
rected graph, BFS(s) visits all vertices in the connected component (CC) of s, and the BFS-
tree obtained is a spanning tree of CC(s).

Proof idea: Assume by contradiction that there is a vertex v in CC(u) that is not reached by
BFS(u). Since u, v are in same CC, there must exist a path v0 = u, v1, v2, ..., vk, v connecting
u to v. Let vi be the last vertex on this path that is reached by BFS(u) (vi could be
u). When exploring vi, BFS must have explored edge (vi, vi+1),..., leading eventually to v.
Contradiction.

• Lemma: BFS(s) runs in O(|Vc| + |Ec|), where Vc, Ec are the number of vertices and edges
in CC(s). When run on the entire graph, BFS(G) runs in O(|V |+ |E|) time. Put differently,
BFS runs in linear time in the size of the graph.

Proof: It explores every vertex once. Once a vertex is marked, it’s not explored again. It
traverses each edge twice. Overall, O(|V |+ |E|).

• Lemma: Let x be a vertex reached in BFS(s). Its distance d[x] represents the the shortest
path from s to x in G.

Proof idea: All vertices v which are one edge away from s are discovered when exploring s and
are set with d[v] = 1. Similarly all vertices that are one edge away from vertices at distance
1, are explored and their distance set to d = 2. And so on. Make this formal with induction.

• Lemma: For undirected graphs, for any non-tree edge (x, y) in BFS(v), the level of x and y
differ by at most one.

Proof idea: Observe that, at any point in time, the vertices in the queue have distances that
differ by at most 1. Let’s say x comes out first from the queue; at this time y must be already
marked (because otherwise (x, y) would be a tree edge). Furthermore y has to be in the
queue, because, if it wasn’t, it means it was already deleted from the queue and we assumed
x was first. So y has to be in the queue, and we have |d(y)− d(x)| ≤ 1 by above observation.

3

Depth-first search (DFS)

• Use stack instead of queue to hold discovered vertices:

– We go “as deep as possible”, go back until we find first unexplored adjacent vertex

• Useful to compute “start time” and “finish time” of vertex u

– Start time d[u]: time when a vertex is first visited.

– Finish time f[u]: time when all adjacent vertices of u have been visited.

• We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead
of a QUEUE, or, we can write a recursive DFS procedure

DFS(u)

color[u] = gray

d[u] = time

time = time + 1

FOR each v ∈ adj[u] DO

IF color[v] = white THEN

parent[v] = u

DFS(v)

color[u] = black

f [u] = time

time = time + 1

• Example:

DFS Properties:

• DFS(u) reaches all vertices reachable from u. On undirected graphs, DFS(u) visits all vertices
in CC(u), and the DFS-tree obtained is a spanning tree of CC(u).

• Analysis: DFS(s) runs in O(|Vc|+ |Ec|), where Vc, Ec are the number of vertices and edges in
CC(s) (reachable from s, for directed graphs). When run on the entire graph, DFS(G) runs
in O(|V |+ |E|) time. Put differently, DFS runs in linear time in the size of the graph.

• As with BFS (v, parent[v]) forms a tree, the DFS-tree

• Nesting of descendants: If u is descendent of v in DFS-tree then d[v] < d[u] < f [u] < f [v].

4

