

 $7 \ 4 \ 9 \ \underline{6} \ 2 \rightarrow 2 \ 4 \ \underline{6} \ 7 \ 9$

 $\underline{4} \quad 2 \rightarrow 2 \quad \underline{4}$

 $\frac{7}{2} \stackrel{9}{\rightarrow} \frac{7}{2} \stackrel{9}{\rightarrow}$

 $2 \rightarrow 2$

QuickSort

- QuickSort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recurse: recursively sort S_1 and S_2
 - Conquer: depends on what partition does.

```
QuickSort(S)
if S.size() \le 1
return

last = last item in S
(S_1, S_2) = partition(S, last)
QuickSort(S_1)
QuickSort(S_2)
```

Partition

- We partition by removing, in turn, each element y from S and inserting y into L (less than the pivot) or G, (greater than the pivot)
- Each insertion and removal takes constant time, so partitioning takes O(n) time

```
partition(S, pivot)
LE = empty list
G = empty list
while S.isEmpty == false
y = S.get(0)
S.remove(0)
if y <= pivot
LE.add(y)
else // y > pivot
G.add(y)
return LE and G
```

QuickSort

- Divide: take the last element x as the pivot and partition the list into
 - *LE*, elements <= x
 - *G*, elements > *x*
- Recurse: sort LE and G
- Conquer: Nothing to do!
- Issue: In-Place?

In-Place Partitioning (Hoare)

Perform the partition using two indices to split S into L and G.

```
j
3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 9 6 (pivot = 6)
```

- Repeat until j and k cross:
 - Scan j to the right until finding an element > pivot.
 - Scan k to the left until finding an element < pivot.
 - Swap elements at indices j and k
- Then swap the element at index j with the pivot.

In-Place Partitioning (Hoare)

```
HOARE-PARTITION (A, p, r)
   x \leftarrow A[p]
 2 \quad i \leftarrow p-1
 j \leftarrow r + 1
 4 while TRUE
           do repeat j \leftarrow j-1
                 until A[j] \leq x
               repeat i \leftarrow i + 1
                 until A[i] \geq x
 9
               if i < j
                 then exchange A[i] \leftrightarrow A[j]
10
                 else return j
```

In-Place Partitioning (Lomuto)

```
PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1 DO
    if A[j] \leq x
         i = i + 1
         swap A[i] and A[j]
swap A[i+1] and A[r]
return i+1
```

What's the Running Time?

- It depends!
- On what?
- Best Case?
 - What's the recurrence?
 - What's the solution to the recurrence?
- Worst Case?
 - What's the recurrence?
 - What's the solution to the recurrence?

Best-Case Running Time

- The best case for quick-sort occurs when the pivot is the median
- Both sides of the partition have the same number of elements
- The running time is exactly like MergeSort:

$$T(n) = 2T(n/2) + n$$

 \bullet So, the best-case running time of QuickSort is $O(n \lg n)$

Worst-Case Running Time

- The worst case for quick-sort occurs when the pivot is the minimum or maximum element
- One side of the partition has n-1 elements and the other has 0
- The running time is proportional to the sum of the partition times:

$$n + (n-1) + ... + 2 + 1$$

Thus, the worst-case running time of QuickSort is $O(n^2)$ depth time

n - 1 1

Expected Running Time, Part 1

- lackloss Consider a recursive call of QuickSort on a sequence of size n
 - Good split: the sizes of LE and G are each less than or equal to 3n/4
 - Bad split: one of LE and G has size greater than 3n/4
- ◆ A split is good with probability 1/2
 - 1/2 of the possible pivots cause good splits:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bad pivots Good pivots Bad pivots

 Use this to determine how many splits we need and, therefore, how many levels of recursion we will have

Expected Running Time, Part 2

- What is the most number of levels at which we need to get "good" splits to get down to an input size of 1?
- The worst "good" split is an n/4, 3n/4 split
- How many of these do we need to get down to size 1?

$$\left(\frac{3}{4}\right)^{i} n = 1$$
 which means that $i = \frac{\lg n}{\lg(4/3)}$

- Probability Fact: The expected number of coin tosses required in order to get k heads is 2k.
- Since we need i worst "good" splits, and the probability of getting a "good" split is 1/2, the expected number of splits needed is 2i or:

$$\frac{2\lg n}{\lg(4/3)} \approx 4.8\lg n$$

- \bullet The amount of work done at all nodes of the same depth is O(n)
- \bullet Thus, the expected running time of QuickSort is $O(n \log n)$

QuickSort: Random is Better

- Choosing the last element as the pivot can lead to worst-cast behavior, especially if...
- Choosing a pivot randomly can still lead to worst-case behavior, but it's much less likely
- Random pivot is standard

```
QuickSort(S)
if S.size() <= 1
return
```

```
rItem= random item in S

(S_1, S_2) = partition(S, rItem)

QuickSort(S_1)

QuickSort(S_2)
```

Power of Randomization

- Can show that randomized QuickSort runs in O(n log n) with high probability
- What if we didn't choose the pivot randomly?
 - Not first or last element
 - Median of 3
- What would be the best possible pivot?
- Why not use that?

QuickSort Tree

- An execution of QuickSort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Pivot selection

7 2 9 4 3 7 <u>6</u> 1

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

7 2 9 4 3 7 <u>6</u> 1

 $2 4 3 1 \rightarrow 1 2 3 4$

 $4 \ \underline{3} \rightarrow \underline{3} \ 4$

Recursive call, pivot selection

Partition, ..., recursive call, base case

7 2 9 4 3 7 $\underline{6}$ 1 \rightarrow 1 2 3 4 $\underline{6}$ 7 7 9

 $7 9 \underline{7} \rightarrow 7 \underline{7} 9$

$$1 \rightarrow 1$$

 $4 3 \rightarrow 3 4$

$$9 \rightarrow 9$$

QuickSort Visualization

Sorting Algorithms