
1

QuickSort
7 4 9 6 2 ® 2 4 6 7 9

4 2 ® 2 4 7 9 ® 7 9

2 ® 2 9 ® 9

QuickSort
QuickSort on an input
sequence S with n
elements consists of
three steps:
n Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

n Recurse: recursively sort
S1 and S2

n Conquer: depends on
what partition does.

QuickSort(S)
if S.size() <= 1

return

last = last item in S
(S1, S2) = partition(S, last)
QuickSort(S1)
QuickSort(S2)

3

Partition
We partition by removing,
in turn, each element y from S
and inserting y into L (less
than the pivot) or G, (greater
than the pivot)
Each insertion and removal
takes constant time, so
partitioning takes O(n) time

partition(S, pivot)
LE = empty list
G = empty list
while S.isEmpty == false

y = S.get(0)
S.remove(0)
if y <= pivot

LE.add(y)
else // y > pivot

G.add(y)
return LE and G

4

QuickSort
Divide: take the last element
x as the pivot and partition the
list into
n LE, elements <= x
n G, elements > x

Recurse: sort LE and G

Conquer: Nothing to do!

Issue: In-Place?

x

x

LE G

x

5

In-Place Partitioning (Hoare)
Perform the partition using two indices to split S into L
and G.

Repeat until j and k cross:
n Scan j to the right until finding an element > pivot.
n Scan k to the left until finding an element < pivot.
n Swap elements at indices j and k

Then swap the element at index j with the pivot.

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 9 6

j k

(pivot = 6)

j

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 9 6

k

6

In-Place Partitioning (Hoare)

7

In-Place Partitioning (Lomuto)

8

What’s the Running Time?
It depends!

On what?

Best Case?
n What’s the recurrence?
n What’s the solution to the recurrence?

Worst Case?
n What’s the recurrence?
n What’s the solution to the recurrence?

9

Best-Case Running Time
The best case for quick-sort occurs when the pivot is the median
Both sides of the partition have the same number of elements
The running time is exactly like MergeSort:

So, the best-case running time of QuickSort is O(n lg n)

T’s size
1 n

2 n/2

… …

2i n/2i

T (n) = 2T (n / 2)+ n
time

n

n

n

…

10

Worst-Case Running Time
The worst case for quick-sort occurs when the pivot is the minimum
or maximum element
One side of the partition has n - 1 elements and the other has 0
The running time is proportional to the sum of the partition times:

n + (n - 1) + … + 2 + 1
Thus, the worst-case running time of QuickSort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

…

11

Expected Running Time, Part 1
Consider a recursive call of QuickSort on a sequence of size n
n Good split: the sizes of LE and G are each less than or equal to 3n/4
n Bad split: one of LE and G has size greater than 3n/4

A split is good with probability 1/2
n 1/2 of the possible pivots cause good splits:

Use this to determine how many splits we need and, therefore,
how many levels of recursion we will have

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

12

Expected Running Time, Part 2
What is the most number of levels at which we need to get “good”
splits to get down to an input size of 1?
The worst “good” split is an n/4, 3n/4 split
How many of these do we need to get down to size 1?

which means that

Probability Fact: The expected number of coin tosses required in
order to get k heads is 2k.
Since we need i worst “good” splits, and the probability of getting a
“good” split is 1/2, the expected number of splits needed is 2i or:

The amount of work done at all nodes of the same depth is O(n)
Thus, the expected running time of QuickSort is O(n log n)

€

3
4
⎛
⎝
⎜
⎞
⎠
⎟
i

n=1

€

i =
lgn

lg(4/3)

€

2lgn
lg(4/3)≈ 4.8lgn

QuickSort: Random is Better
Choosing the last
element as the pivot
can lead to worst-cast
behavior, especially if…
Choosing a pivot
randomly can still lead
to worst-case behavior,
but it’s much less likely
Random pivot is
standard

QuickSort(S)
if S.size() <= 1

return

rItem= random item in S
(S1, S2) = partition(S, rItem)
QuickSort(S1)
QuickSort(S2)

Power of Randomization
Can show that randomized QuickSort runs in

O(n log n) with high probability
What if we didn’t choose the pivot randomly?
n Not first or last element
n Median of 3
What would be the best possible pivot?
Why not use that?

14

15

QuickSort Tree
An execution of QuickSort is depicted by a binary tree
n Each node represents a recursive call of quick-sort and stores

w Unsorted sequence before the execution and its pivot
w Sorted sequence at the end of the execution

n The root is the initial call
n The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 ® 2 4 6 7 9

4 2 ® 2 4 7 9 ® 7 9

2 ® 2 9 ® 9

16

Execution Example
Pivot selection

7 2 9 4 ® 2 4 7 9

2 ® 2

7 2 9 4 3 7 6 1 ® 1 2 3 4 6 7 8 9

3 8 6 1 ® 1 3 8 6

3 ® 3 8 ® 89 4 ® 4 9

9 ® 9 4 ® 4

17

Execution Example (cont.)
Partition, recursive call, pivot selection

2 4 3 1 ® 2 4 7 9

9 4 ® 4 9

9 ® 9 4 ® 4

7 2 9 4 3 7 6 1 ® 1 2 3 4 6 7 8 9

3 8 6 1 ® 1 3 8 6

3 ® 3 8 ® 82 ® 2

18

Execution Example (cont.)
Partition, recursive call, base case

2 4 3 1 ®® 2 4 7

1 ® 1 9 4 ® 4 9

9 ® 9 4 ® 4

7 2 9 4 3 7 6 1 ® ® 1 2 3 4 6 7 8 9

3 8 6 1 ® 1 3 8 6

3 ® 3 8 ® 8

19

Execution Example (cont.)
Recursive call, …, base case, join

3 8 6 1 ® 1 3 8 6

3 ® 3 8 ® 8

7 2 9 4 3 7 6 1 ® 1 2 3 4 6 7 8 9

2 4 3 1 ® 1 2 3 4

1 ® 1 4 3 ® 3 4

9 ® 9 4 ® 4

20

Execution Example (cont.)
Recursive call, pivot selection

7 9 7 1 ® 1 3 8 6

8 ® 8

7 2 9 4 3 7 6 1 ® 1 2 3 4 6 7 8 9

2 4 3 1 ® 1 2 3 4

1 ® 1 4 3 ® 3 4

9 ® 9 4 ® 4

9 ® 9

21

Execution Example (cont.)
Partition, …, recursive call, base case

7 9 7 1 ® 1 3 8 6

7 2 9 4 3 7 6 1 ® 1 2 3 4 6 7 8 9

2 4 3 1 ® 1 2 3 4

1 ® 1 4 3 ® 3 4

9 ® 9 4 ® 4

7 ® 7 9 ® 9

22

Execution Example (cont.)
Join, join

7 9 7 ® 17 7 9

7 2 9 4 3 7 6 1 ® 1 2 3 4 6 7 7 9

2 4 3 1 ® 1 2 3 4

1 ® 1 4 3 ® 3 4

9 ® 9 4 ® 4

9 ® 97 ® 7

QuickSort Visualization

Sorting Algorithms

23

https://www.toptal.com/developers/sorting-algorithms

