\V

Recursive Sorting

[72|94—>2479]

/\

(712> 27]

[9|4_—>49]
T~

65) (9

(1,
N

Merge Sort

N

Divide-and-Conquer

Divide-and conquer is a general algorithm design
paradigm:

= Divide: divide the input data S in two disjoint
subsets S, and S,

= Recurse: solve the subproblems associated with §,
and S,

= Conquer: combine the solutions for §, and §, into a
solution for .S
@ The base case for the recursion are subproblems
of size 0O or 1
@ Merge-sort is a sorting algorithm based on the
divide-and-conquer paradigm

Merge Sort

Merge-Sort

Merge-sort on an input
sequence S with »
elements consists of
three steps:

= Divide: partition § into

two sequences S, and S,
of about n/2 elements

each

= Recurse: recursively sort
S, and S,

= Conquer: merge S, and
S, into sorted sequence

N

mergeSort(\S)
if S.size() <=1
return

(S, 8,) = partition(S, 2)
mergeSort(S)
mergeSort(S,)

S = merge(S,, S,)

Merge Sort

N

L
@ The conquer step of

merge-sort consists
of merging two
sorted sequences 4
and B into a sorted
sequence S
containing the union
of the elements of 4
and B

Merging two sorted
sequences, each
with n/2 elements
takes O(n) time

Merging Two Sorted Sequences

merge(A, B)
§ = array of size A.length + B.length
sIndex =0

alndex =0
blndex =0

while alndex < A.length and bindex < B.length
if A[alndex | < B[bIndex]
S[sIndex++] = A[alndex++]
else
S[sIndex++] = B[blndex++]

while alndex < A.length
S[sIndex++] = A[alndex++]

while bindex < B.length
S[sIndex++] = B[bIndex++]

Merge Sort

N

L
@ The conquer step of

merge-sort consists
of merging two
sorted sequences 4
and B into a sorted
sequence S
containing the union
of the elements of 4
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes O(n)
time

Merging Two Sorted Sequences

merge(A, B)
S = ArrayList of size A.size() + B.size()
while A.isEmpty() == false and B.isEmpty() == fals
if A.get(0) < B.get(0)
S.add(A.remove(0))
else
S.add(B.remove(0))
while A.isEmpty() == false
S.add(A.remove(0))
while B.isEmpty() == false
S.add(B.remove(0))
return §

c

Merge Sort 5

Merge-Sort Tree

. ® An execution of Merge-Sort can be depicted by a binary

T tree

= each node represents a recursive call of Merge-Sort and stores

» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[72|94—>2479]

[7|2—->27] [9|4_—>49]

7=7) (=2 (=9 (=1

Merge Sort 6

Execution Example

@ Partition

72943861]

Execution Example (cont.)

Recursive call, partition

(7294]3861]

[7 2194] :'

N

Execution Example (cont.)

Recursive call, partition

Merge Sort

Execution Example (cont.)

Recursive call, base case

(7294|3861]

/\
(72]9 4 | []

O O

AEN]))
//\] 4 [A][ﬁ]

=7 | J |

Execution Example (cont.)

N

Recursive call, base case

Merge Sort

Execution Example (cont.)

#® Merge

Execution Example (cont.)

#Recursive call, ..., base case, merge

Merge Sort 13

Execution Example (cont.)

#® Merge

(7294|3861]

I

72)194-2479

/

71227

/N N\
=7 (2=2) [9=9 (=4

Merge Sort 14

Execution Example (cont.)

#Recursive call, ..., merge, merge

(7294]3861]
(72]94-2479 [38]61 136 g
/\ ~ ~

71227 |9]4—-49] [3|8->38 [6]1—>15¢]

Execution Example (cont.)

#® Merge

7294|3861 >12346789]

P AR

(72]94-2479 38|61 —> 1356 8

H

Non-Recursive Merge-Sort

public static void mergeSort(Object[] orig, Comparator c) { // nonrecursive

N
N

merge runs of

length 2, then

4, then 8, and
SO on

merge two runs
in the in array
to the out array

Object[] in = new Object[orig.length]; // make a new temporary array
System.arraycopy(orig,0,in,0,in.length); // copy the input
Object[] out = new Object[in.length]; // output array
Object[] temp; // temp array reference used for swapping
int n = in.length;
for (inti=1; i < n; i*=2) { // each iteration sorts all length-2*i runs
for (int j=0; j < n; j+=2%i) // each iteration merges two length-i pairs
merge(in,out,c,j,i); // merge from in to out two length-i runs at j
temp = in; in = out; out = temp; // swap arrays for next iteration
by
// the "in" array contains the sorted array, so re-copy it
System.arraycopy(in,0,orig,0,in.length);
by
protected static void merge(Object[] in, Object[] out, Comparator ¢, int start,
int inc) { // merge in[start..start+inc-1] and in[start+inc..start+2*inc-1]
int x = start; // index into run #1
int endl = Math.min(start+inc, in.length); // boundary for run #1
int end2 = Math.min(start+2*inc, in.length); // boundary for run #2
int y = start+inc; // index into run #2 (could be beyond array boundary)
int z = start; // index into the out array
while ((x < endl) && (y < end2))
if (c.compare(in[x],in[y]) <= 0) out[z++] = in[x++];
else out[z++] = in[y++];
if (x < endl) // first run didn't finish
System.arraycopy(in, x, out, z, endl - x);
else if (y < end2) // second run didn't finish
System.arraycopy(in, y, out, z, end2 - y);

; Merge Sort

17

Visualizations

N

Sorting Algorithms

Merge Sort 18

N

Efficiency?

Can't just count loop iterations!

® How many levels of recursion?

® How much non-recursive work done at each level?
Need to solve a “recurrence equation”

Merge Sort

19

