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Abstract: In the Particle Swarm Optimization (PSO) algorithm, the expense of evaluating the objective function can
make it difficult, or impossible, to use this approach effectively; reducing the number of necessary function
evaluations would make it possible to apply the PSO algorithm more widely. Many function approximation
techniques have been developed that address this issue, but an alternative to function approximation is func-
tion conservation. We describe GREEN-PSO (GR-PSO), an algorithm that, given a fixed number of function
evaluations, conserves those function evaluations by probabilistically choosing a subset of particles smaller
than the entire swarm on each iteration and allowing only those particles to perform function evaluations. The
“surplus” of function evaluations thus created allows a greater number of particles and/or iterations. In spite of
the loss of information resulting from this more parsimonious use of function evaluations, GR-PSO performs
as well as, or better than, the standard PSO algorithm on a set of six benchmark functions, both in terms of the
rate of error reduction and the quality of the final solution.

1 INTRODUCTION

Swarm intelligence is a natural phenomenon in
which complex behavior emerges from the collective
activities of a large number of simple individuals who
interact with each other and their environment in very
limited ways. A number of swarm based optimization
techniques have been developed, among them Parti-
cle Swarm Optimization (PSO). PSO, introduced by
Kennedy and Eberhart, is loosely based on the phe-
nomenon of birds flocking (Kennedy and Eberhart,
1995). Virtual particles “fly” through the solution
space in search of high quality solutions. The search
trajectory of a particle is influenced by both the best
solution it has found so far (personal best) and the best
solution that has been found so far in its neighbor-
hood; that solution will be a global best if the neigh-
borhood is the entire swarm (as in the original PSO
algorithm), or a local best if the neighborhood is a
strict subset of the swarm. The algorithm iteratively
updates the velocities and positions of the particles
guided by the personal bests and the neighborhood
bests, converging on a (hopefully) global optimum.
PSO is one of the most widely used swarm-based al-
gorithms and has been applied successful to many real
world problems (Poli et al., 2007). Many variants of
the PSO algorithm have been proposed (Sedighizadeh

and Masehian, 2009).
The trajectories of the particles in PSO depend crit-

ically on calculating the value of the objective func-
tion at every position each particle visits. In the stan-
dard PSO algorithm, every particle does a function
evaluation on every iteration in order to determine
the fitness of the candidate solution at the particle’s
new position. A typical PSO algorithm uses at least
20-40 particles and thousands of iterations to find
even a suboptimal (but acceptable) solution, and this
high number of function evaluations can be difficult
to achieve in real world applications if the objective
function is expensive to compute, in terms of time
and/or money. For example, evaluating the effective-
ness of a complex control mechanism that a PSO al-
gorithm is trying to optimize might involve running a
simulation that takes several hours.

A common way of addressing this problem
is to use function approximation, which can take
many forms: response surface methods, radial ba-
sis functions, Kriging (DACE models), Gaussian pro-
cess regression, support vector machines, and neu-
ral networks (Landa-Becerra et al., 2008). An-
other approximation technique is fitness inheritance,
in which the objective function value, or fitness,
of an individual is approximated based on the fit-
nesses of one or more other individuals designated as



“parents”(Reyes-Sierra and Coello Coello, 2007).
Instead of using less expensive—but possibly less

effective—approximations of the function, an algo-
rithm could perform fewer exact evaluations of the
function, thereby conserving this resource. This is the
approach adopted by GREEN-PSO (GR-PSO), the algo-
rithm we present here. GR-PSO demonstrates that per-
formance comparable to or, in some cases, better than
that of the standard PSO algorithm can be achieved by
permitting only a subset of the particles in the swarm
to do function evaluations during each iteration, and
using the conserved function evaluations to increase
the number of particles in the swarm and/or the num-
ber of iterations that are possible, given a fixed num-
ber of function evaluations.

In Section 2, we describe the basic PSO algorithm
and present the GR-PSO algorithm. We describe and
discuss the results of our experiments in Section 3.
We discuss related work in Section 4, and conclude
with some ideas for future work in Section 5.

2 PSO AND GR-PSO

2.1 Standard PSO

The standard PSO algorithm uses a swarm of particles
to iteratively search a d-dimensional solution space
for good solutions, guided by their own experience
and that of the swarm. The number of particles in the
swarm is fixed and the position and velocity of each
particle i, ~xi and ~vi, respectively, are initialized ran-
domly. Particle i remembers the best solution it has
found so far, ~pi, and the best solution found so far
by the particles in particle i’s neighborhood, ~gi. (In
the original PSO algorithm, the neighborhood of ev-
ery particle is the entire swarm.) The velocity ~vi of
particle i is updated during each iteration such that
its motion is biased toward both ~pi and ~gi, and the
new velocity is used to update its position ~xi. There
are a number of basic PSO algorithms. For purposes
of comparison, we adopt the PSO algorithm with a
constriction coefficient χ and velocity limits as de-
scribed in (Poli et al., 2007), which we reproduce here
with minor changes. The velocity and position update
equations are:

~vi← χ(~vi +~U(0,φ1)⊗ (~pi−~xi)+~U(0,φ2)⊗ (~gi−~xi))
(1)

~xi←~xi +~vi (2)

where:
• φ1 and φ2, the acceleration coefficients that scale

the attraction of particle i to ~pi and ~gi, respec-
tively, are equal,

• ~U(0,φi) is a vector of real random numbers uni-
formly distributed in [0,φi], which is randomly
generated at each iteration for each particle, and

• ⊗ is component-wise multiplication.

The value of the constriction coefficient χ is:
2

φ−2+
√

φ2−4φ
where φ = φ1 + φ2 = 4.1, giving χ a

value of approximately 0.7298. Finally, each compo-
nent~vi is restricted to a range [Vmin,Vmax], where Vmin
and Vmax are the minimum and maximum values of
the search space and are identical for each dimension.

2.2 GR-PSO

The PSO algorithm is often motivated by referencing
the human decision-making process, in which an in-
dividual, confronted with a problem, makes a deci-
sion based partially on her own experience solving
that problem in the past and partially on the experi-
ence of others who have solved that problem before.
Extending that analogy, we suggest that, while trying
to improve the best solution she has found in the past,
she may suspend evaluation of her efforts for a period
of time, in order to conserve the resources that would
be required to evaluate the solution. A second goal
might be to prevent evaluating a new solution prema-
turely and possibly rejecting it before its value can be
accurately assessed.

GR-PSO models these goals in the following way.
GR-PSO operates like S-PSO, except that each parti-
cle, after calculating a new velocity and changing its
position according to that velocity, performs a func-
tion evaluation on its new position with some proba-
bility probFE, where 0.0< probFE < 1.0. This means
that on every iteration, the expected number of par-
ticles doing a function evaluation is (n × probFE),
where n is the number of particles in the swarm, so
the expected number of iterations is (numFEs/(n ×
probFE)), where numFEs is the total number of func-
tion evaluations available. This allows the swarm to
use more particles for the same number of iterations,
or more iterations for the same number of particles.
See Figure 1 for pseudocode for GR-PSO.

3 EXPERIMENTAL RESULTS

We tested GR-PSO on six standard benchmark
functions: Sphere ( f1), Rosenbrock ( f2), Ackley ( f3),
Griewank ( f4), Rastrigin ( f5), and Penalized Function
P16 ( f6) ( fi identifiers used in Tables 1 and 2). See
(Bratton and Kennedy, 2007) for the function defini-
tions. Sphere and Rosenbrock are uni-modal func-
tions, while Ackley, Griewank, Rastrigin, and Pe-



BEGIN
Initialize swarm
while (numFunctionEvaluations ≤ 10,000)

for each particle:
Calculate velocity and move
if (randomDouble < probFE)

Evaluate new position and update bests
end-if

end-for
end-while

END
Figure 1: Pseudocode for GR-PSO.

nalized Function P8 are multi-modal functions with
many local optima. The optimum (minimum) value
for all of these functions is 0.0. We randomly shifted
the location of the optima away from the center of
the search space in order to avoid the tendency of
PSO algorithms to converge to the center (Monson and
Seppi, 2005).

We tested each of these functions in 30 dimen-
sions. We used the gbest topology, in which the
neighborhood for each particle is the entire swarm,
for both GR-PSO and S-PSO. We fixed the number of
function evaluations at 10,000 and tested over a range
of number of particles (10, 20, 50, 100, 200) and a
range of values for probFE (0.9, 0.8, . . . , 0.1). We
measured the mean and standard deviation of the best
(lowest) function value found and the median error
every 2,000 function evaluations (to avoid the effect
of outliers).

A note on our choice of topologies: It seems likely
that GR-PSO works, at least in part, because, by de-
laying the discovery of new global bests, it weakens
the tendency of the gbest topology to produce early
convergence on a local minimum. Topologies with
smaller neighborhoods, such as the ring topology (in
which the particles can be viewed as being arranged in
a ring, and the neighbors of each particle are just the
two particles on either side of it) also improve per-
formance by slowing the propagation of the global
best. And, in fact, it was the case that, using the
ring topology, GR-PSO did not provide the same per-
formance gains over S-PSO as it did with the gbest
topology. Thus, it would seem that a more appro-
priate comparison would be between GR-PSO using
the gbest topology and S-PSO using the ring topology.
The improved performance of the ring topology over
the gbest topology, however, is obtained only with a
sufficient number of iterations and our limit of 10,000
function evaluations did not allow sufficient iterations
for the ring topology’s benefits to materialize. In fact,
while S-PSO with the ring topology outperformed S-
PSO with the gbest topology when 200,000 function

evaluations were allowed, S-PSO with the gbest topol-
ogy outperformed S-PSO with the ring topology when
only 10,000 function evaluations were allowed. For
this reason, we feel that the appropriate comparison
for GR-PSO with the gbest topology is still S-PSO with
the gbest topology, and we report those results.

Initial tests suggested that 10 particles are unable
to explore the space sufficiently, even given the addi-
tional iterations provided by a probFE of less than 1.0,
and that swarms of 100 or 200 particles reduce the
number of iterations (given the fixed number of func-
tion evaluations) to unacceptable levels, in spite of the
additional iterations provided by a probFE of less than
1.0. Thus, we confined further tests to 20-particle and
50-particle swarms. Initial tests of the S-PSO algo-
rithm over the same range of number of particles in-
dicated that 20-particle and 50-particle swarms were
best for that algorithm as well, for similar reasons.

Given a swarm with 20 or 50 particles, the im-
provement in performance was most pronounced at
or below a probFE of 0.5. The performance showed
a tendency to improve as probFE decreased, so we
tested two values below 0.1, i.e. 0.05 and 0.01. While
a probFE of 0.05 often produced results that were bet-
ter than those with a probFE of 0.1, a probFE of 0.01
was almost never better than a probFE of 0.05. In ad-
dition, since GR-PSO reduces the number of function
evaluations on each iteration by a factor of probFE,
the run time increases by a factor of 1/probFE, and the
additional run time with a probFE of 0.01 did not jus-
tify the occasional improvement in performance. The
best results for 20-particle and 50-particle swarms
were obtained with a probFE of 0.2, 0.1, or 0.05.
Thus, we show results for these six GR-PSO cases and
for S-PSO with 20 particles and 50 particles.

Results for the six versions of GR-PSO and the two
versions of S-PSO are presented in Table 1 and Fig-
ure 2. For each function, the results from the six GR-
PSO algorithms are followed by those from the two
S-PSO algorithms. The mean and standard deviation
of the lowest function value found are shown in Ta-
ble 1. To show the reduction in error during the run,
we report the median error at intervals of 2,000 func-
tion evaluations, also in Table 1. For each function, in
each column, the best result is in bold-face and is ital-
icized, and the two next best results are in bold-face.

In all cases, GR-PSO achieves the lowest av-
erage function value, and in all but three cases—
Rosenbrock ( f2), Ackley ( f3) and Rastrigin ( f5)—
the best three results are all achieved by GR-PSO.
With the exception of Ackley ( f3) and Rastrigin ( f5),
the algorithms with the best three average function
values also have the lowest standard deviations. In
three cases—Sphere ( f1), Griewank ( f4), and Penal-



Func- Mean Function Value Median Error (121 runs) for Num of Function Evaluations
tion Algorithm (Standard Deviation) 2,000 4,000 6,000 8,000 10,000
f1 CPSO-20-0.2 5.44e-07 (2.36e-06) 1.47e+02 5.43e-01 1.88e-03 9.45e-06 3.09e-08

CPSO-20-0.1 4.91e-08 (2.11e-07) 8.61e+01 1.92e-01 4.66e-04 1.01e-06 2.83e-09
CPSO-20-0.05 1.31e-07 (1.22e-06) 5.66e+01 1.10e-01 2.48e-04 5.81e-07 1.24e-09
CPSO-50-0.2 1.77e-03 (2.40e-03) 8.61e+02 2.86e+01 8.01e-01 2.36e-02 8.25e-04
CPSO-50-0.1 1.65e-04 (2.04e-04) 5.76e+02 1.25e+01 2.49e-01 5.05e-03 8.85e-05
CPSO-50-0.05 3.70e-05 (4.74e-05) 4.41e+02 7.08e+00 8.35e-02 1.54e-03 1.95e-05
SPSO-20 5.42e-03 (1.28e-02) 6.70e+02 2.15e+01 9.19e-01 3.08e-02 9.94e-04
SPSO-50 1.14e+00 (1.47e+00) 2.93e+03 3.67e+02 4.73e+01 5.66e+00 6.93e-01

f2 CPSO-20-0.2 3.77e+01 (2.42e+01) 8.88e+01 3.08e+01 2.75e+01 2.67e+01 2.62e+01
CPSO-20-0.1 3.45e+01 (2.47e+01) 7.15e+01 2.89e+01 2.72e+01 2.66e+01 2.61e+01
CPSO-20-0.05 3.57e+01 (2.56e+01) 7.66e+01 2.82e+01 2.70e+01 2.65e+01 2.61e+01
CPSO-50-0.2 3.11e+01 (1.57e+01) 1.35e+02 3.98e+01 2.84e+01 2.72e+01 2.67e+01
CPSO-50-0.1 3.52e+01 (2.10e+01) 1.29e+02 5.30e+01 2.85e+01 2.74e+01 2.68e+01
CPSO-50-0.05 3.06e+01 (1.67e+01) 1.12e+02 3.28e+01 2.79e+01 2.71e+01 2.65e+01
SPSO-20 3.24e+01 (1.80e+01) 1.28e+02 4.82e+01 2.89e+01 2.70e+01 2.60e+01
SPSO-50 4.04e+01 (2.44e+01) 2.86e+02 9.94e+01 4.36e+01 3.00e+01 2.80e+01

f3 CPSO-20-0.2 9.93e+00 (8.00e+00) 7.85e+00 5.57e+00 5.53e+00 5.53e+00 5.53e+00
CPSO-20-0.1 9.92e+00 (7.50e+00) 7.78e+00 6.16e+00 6.13e+00 6.13e+00 6.13e+00
CPSO-20-0.05 1.17e+01 (7.36e+00) 1.21e+01 1.04e+01 1.02e+01 1.02e+01 1.02e+01
CPSO-50-0.2 6.04e+00 (8.72e+00) 8.60e+00 3.56e+00 1.76e+00 1.35e+00 1.34e+00
CPSO-50-0.1 7.48e+00 (9.23e+00) 8.91e+00 3.33e+00 1.94e+00 1.65e+00 1.65e+00
CPSO-50-0.05 8.54e+00 (9.18e+00) 8.41e+00 3.40e+00 2.25e+00 2.02e+00 2.01e+00
SPSO-20 9.39e+00 (8.15e+00) 9.36e+00 5.07e+00 4.59e+00 4.38e+00 4.38e+00
SPSO-50 8.35e+00 (9.08e+00) 1.30e+01 6.78e+00 4.08e+00 2.85e+00 2.35e+00

f4 CPSO-20-0.2 3.78e-02 (6.66e-02) 2.01e+00 4.60e-01 2.65e-02 1.72e-02 1.72e-02
CPSO-20-0.1 8.09e-02 (2.95e-01) 1.59e+00 2.54e-01 3.55e-02 2.70e-02 2.70e-02
CPSO-20-0.05 6.67e-02 (1.63e-01) 1.69e+00 1.94e-01 2.56e-02 2.21e-02 2.21e-02
CPSO-50-0.2 1.72e-02 (1.97e-02) 9.26e+00 1.28e+00 8.24e-01 7.14e-02 1.23e-02
CPSO-50-0.1 1.74e-02 (2.54e-02) 7.39e+00 1.11e+00 4.50e-01 2.60e-02 1.08e-02
CPSO-50-0.05 1.85e-02 (2.17e-02) 4.81e+00 1.06e+00 1.92e-01 1.53e-02 9.93e-03
SPSO-20 9.02e-02 (1.67e-01) 6.65e+00 1.18e+00 5.17e-01 7.28e-02 3.99e-02
SPSO-50 6.93e-01 (2.32e-01) 3.16e+01 4.11e+00 1.38e+00 1.06e+00 7.09e-01

f5 CPSO-20-0.2 1.02e+02 (4.88e+01) 1.07e+02 9.08e+01 9.05e+01 9.05e+01 9.05e+01
CPSO-20-0.1 1.18e+02 (7.05e+01) 1.17e+02 9.66e+01 9.65e+01 9.65e+01 9.65e+01
CPSO-20-0.05 1.25e+02 (8.01e+01) 1.07e+02 9.46e+01 9.45e+01 9.45e+01 9.45e+01
CPSO-50-0.2 7.53e+01 (3.35e+01) 1.83e+02 9.58e+01 7.42e+01 6.71e+01 6.57e+01
CPSO-50-0.1 8.16e+01 (3.44e+01) 1.65e+02 9.30e+01 7.82e+01 7.37e+01 7.36e+01
CPSO-50-0.05 8.49e+01 (4.69e+01) 1.40e+02 8.42e+01 7.33e+01 7.17e+01 7.16e+01
SPSO-20 8.80e+01 (3.17e+01) 1.70e+02 9.87e+01 8.59e+01 8.36e+01 8.36e+01
SPSO-50 7.65e+01 (2.57e+01) 2.61e+02 1.71e+02 1.16e+02 8.73e+01 7.35e+01

f6 CPSO-20-0.2 4.71e-01 (1.01e+00) 5.70e+03 1.43e+01 3.04e+00 3.65e-01 1.16e-02
CPSO-20-0.1 4.61e-01 (9.55e-01) 1.38e+03 1.07e+01 2.14e+00 1.12e-01 1.11e-02
CPSO-20-0.05 4.76e-01 (9.58e-01) 3.39e+02 9.24e+00 1.71e+00 9.74e-02 1.10e-02
CPSO-50-0.2 2.59e-01 (6.13e-01) 1.99e+05 4.76e+01 7.96e+00 7.33e-01 5.43e-02
CPSO-50-0.1 2.53e-01 (7.12e-01) 1.04e+05 2.66e+01 3.27e+00 2.32e-01 1.57e-02
CPSO-50-0.05 1.12e-01 (4.18e-01) 5.95e+04 2.57e+01 3.17e+00 1.34e-01 1.15e-02
SPSO-20 2.24e+00 (3.41e+00) 5.95e+04 2.44e+01 6.83e+00 2.21e+00 5.92e-01
SPSO-50 4.38e+00 (5.76e+00) 8.52e+05 2.57e+03 3.32e+01 9.27e+00 2.33e+00

Key: CPSO-n-p = GR-PSO with n particles and probFE = p SPSO-n = S-PSO with n particles
Table 1: Performance of GR-PSO and S-PSO over 121 runs
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(a) Sphere Function
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(b) Rosenbrock Function
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(c) Ackley Function
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(d) Griewank Function
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(e) Rastrigin Function
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(f) Penalized Function P16
Figure 2: Comparison of GR-PSO and S-PSO: median absolute value error (log scale) as a function of number of function
evaluations



ized P16 ( f6)—the two S-PSO algorithms have the
worst average function values.

In the case of Sphere ( f1), the average function
value of the best GR-PSO algorithm (20 particles and
probFE of 0.1) was five orders of magnitude better
than that of the best S-PSO algorithm (20 particles).
And, in the case of Penalized P16 ( f6), the average
function value of the best GR-PSO algorithm (50 par-
ticles and probFE of 0.05) was an order of magnitude
better than that of the best S-PSO algorithm (20 parti-
cles). In the other four functions, the performance of
the best GR-PSO algorithm and the best S-PSO algo-
rithm had the same order of magnitude, but we feel
that the proper perspective here is not that the dif-
ference is small, but that, in spite of not performing
function evaluations at every opportunity, even to the
point where the expected number of particles doing a
function evaluation during an iteration was only one
particle (20 particles with a probFE of 0.05), the per-
formance of GR-PSO was no worse than S-PSO.

Final median error showed similar results, with
GR-PSO showing the lowest median error in all
cases but Rosenbrock ( f2). In all but two cases—
Rosenbrock ( f2) and Rastrigin ( f5)—the algorithms
that achieved the three lowest final median errors were
GR-PSO algorithms. And at every function evalua-
tion milestone, the algorithms with the three lowest
median error were all GR-PSO algorithms. More im-
portantly, the best GR-PSO algorithm reduced the me-
dian error more quickly in two cases—Sphere ( f1)
and Grieweank ( f4)—than the best S-PSO algorithm
(Figure2). In Sphere ( f1), this was true throughout the
run, and in Grieweank ( f4), this was true from approx-
imately function evaluation 3000 to function evalua-
tion 5500. (See Figure 2.)

None of the six GR-PSO algorithms tested was the
best in all cases, but the results indicate that, over the
range of values we tested, the number of particles is
a more significant factor than the value of probFE;
for all the functions, changing the value of probFE
does not seem to make a significant difference. With
the exception of Ackley ( f3), the 20-particle GR-PSO
has better performance than the 50-particle GR-PSO,
in terms of median error, until at least approximately
function evaluation 3,500. For the Sphere Function
( f1), that difference persists throughout the run, and
for Griewank ( f4) and the Penalized Function P8 ( f6),
that difference persists until approximately function
evaluation 7500 and function evaluation 5500, respec-
tively. Thus, these results suggest that while a mini-
mum number of particles is necessary to explore the
solution space (more than 10, given our initial explo-
rations described above), a smaller swarm can explore
the space sufficiently, and the increased number of it-

Mean Rank
Fnc GR-PSO S-PSO U Z p
f1 60.5 181.0 1 -13.44 0.0
f2 119.6 123.5 7084 -0.43 0.67
f3 93.3 149.7 3913 -6.26 0.0
f4 90.5 152.5 3570 -6.89 0.0
f5 115.5 127.5 6592 -1.34 0.18
f6 85.6 157.4 2977 -7.98 0.0

Table 2: Mann-Whitney statistics for final errors

erations made possible by the smaller swarm, more
than compensates for the size of the swarm.

The final errors for the 121 runs for the best
GR-PSO algorithm and the best S-PSO algorithm for
each function were rank ordered and a 2-tailed Mann-
Whitney U-test was used to compare the ranks. Since
the samples were large enough (> 20), the distribution
of the U statistic approximates a normal distribution,
so we report the Z-score, which is typically used in
such cases, as well as the U-score. The results indi-
cate a statistically significant difference in the distri-
butions of the two groups at the 0.01 level—the error
of the GR-PSO tests being less than that of the S-PSO
tests—for four of the test functions: Sphere ( f1), Ack-
ley ( f3), Griewank ( f4), and Penal P16 ( f6).The re-
sults indicated that there was not a statistically signif-
icant difference for two of the functions: Rosenbrock
( f2) and Rastrigin ( f5). See Table 2.

GR-PSO can be viewed as an extreme form of fit-
ness inheritance, so we also compared GR-PSO to a
PSO algorithm that employs this approach. In fit-
ness inheritance techniques, the value of the objective
function for a particle’s current position is approxi-
mated based on the objective function values of some
set of particles designated as its “parents,” thereby
avoiding function evaluations. In GR-PSO, a particle
that does not do a function evaluation is its own par-
ent, inheriting its own function evaluation directly.

Reyes-Sierra and Coello Coello incorporated fit-
ness inheritance into a PSO algorithm (the only work
we are aware of that incorporates fitness inheritance
into the PSO algorithm) and tested the effectiveness of
twelve fitness inheritance techniques (and four fitness
approximation techniques) in a multi-objective PSO
algorithm (Reyes-Sierra and Coello Coello, 2007).
MOPSO, the multi-objective PSO algorithm they test
these techniques on, is based on Pareto dominance
and, at any given point, there is a set of leaders, which
are the nondominated solutions. The scope from
which these leaders are drawn is the entire swarm, so
the topology of their algorithm is similar to the global
topology of GR-PSO.

These leaders, along with the standard personal



best of a particle and the previous position of a par-
ticle, form the set of possible parents when calculat-
ing the fitness inherited by that particle. We com-
pared GR-PSO to the best three techniques (accord-
ing to their ranking of overall performance). To apply
these techniques in a single objective setting, we used
the global best for any situation in which a particle
from the set of leaders was called for.

The performance of all three of these approaches
was never better than the best GR-PSO population-
probability combinations, and, for all functions, the
majority of GR-PSO population-probability combina-
tions was better than all three of these techniques. We
note that the differences in performance were, in some
cases, quite small. We are not claiming that GR-PSO
is significantly better than these three techniques, but
that these three techniques do not seem to be better
than GR-PSO.

It is interesting to note, that the probabilities they
tested were equivalent to GR-PSO probabilities in the
range of [0.6,0.9], much higher than the function eval-
uation probabilities we found to be best, i.e. in the
range of [0.05,0.2]. This supports the idea that in
a larger neighborhood, such as the gbest topology,
it may be better to do without any information for
longer periods of time than to use the currently avail-
able information, even to approximate objective func-
tion values.

4 ADDITIONAL RELATED
WORK

As noted in Section 1, there are a number of tech-
niques that seek to avoid expensive function evalu-
ations by approximating the value of the objective
function. These techniques are catalogued and de-
scribed in (Landa-Becerra et al., 2008) for multi-
objective evolutionary algorithms. Since these tech-
niques have been used primarily in evolutionary algo-
rithms and since the GR-PSO approach is much more
closely related to the approximation technique of fit-
ness inheritance, we will not discuss them further.
The work of Reyes-Sierra and Coello Coello is the
only work we know of that incorporates fitness inher-
itance into a PSO algorithm; that work has been dis-
cussed in the previous section.

Akat and Gazi describe a decentralized, asyn-
chronous approach that allows the PSO algorithm to
be implemented on multiple processors with very
weak requirements on communication between those
processors (Akat and Gazi, 2008a). Particles reside
on different machines. At each time step, each par-
ticle has access only to some subset of those ma-

chines/particles; thus, there may be significant inter-
vals during which a particle p has received no infor-
mation from particle p′; it may even be the case that,
on a given iteration, a particle receives no informa-
tion from any other particles, in which case its posi-
tion and velocity remain the same. They report that
the performance of their approach was comparable to
standard PSO implementations.

In other work, Akat and Gazi compared three ap-
proaches to creating dynamic neighborhoods and sug-
gested that all three approaches were viable alterna-
tives to static neighborhoods (Akat and Gazi, 2008b).
More importantly, however, they considered the effect
of the information flow topology on the performance
of the algorithm. In the general case, the parameter
determining neighborhood composition for each ap-
proach is different for each particle, resulting in non-
reciprocal neighborhoods, which can be represented
as directed graphs. If these digraphs are strongly con-
nected over time, i.e. if there is a fixed interval such
that the union of the digraphs over every interval of
iterations of that length is strongly connected, then
information flow in the swarm will be preserved and
every particle eventually has access to the information
gathered by every other particle.

This work suggests the possibility that GR-PSO
is creating temporary, smaller neighborhoods, the in-
habitants of which are constantly changing, but that
are connected over time. Perhaps the probability of
doing a function evaluation is regulating the connect-
edness of these shifting neighborhoods. An investiga-
tion into this possibility could shed light on the per-
formance of GR-PSO and the performance of PSO al-
gorithms that use dynamic neighborhoods, in general.

Finally, our results suggest an intriguing relation-
ship with work of Garcı́a-Nieto and Alba. In (Garcı́a-
Nieto and Alba, 2012), they tested a variant of the
S-PSO algorithm in which the neighborhood for each
particle on each iteration is constructed by choosing
k other particles, or “informants,” randomly. They
tested the algorithm over a range of values for k and
found evidence for a quasi-optimal neighborhood size
of approximately 6. In a sense, the expected num-
ber of particles doing function evaluations in GR-PSO
during an iteration can be viewed as the number of
informants for every particle in each iteration, since
it is these particles that could potentially provide new
information. If we rank the performance of the GR-
PSO algorithms, and count the number of times each
one appeared in the top five best-performing algo-
rithms for each test function, we find that the best
three are 20 particles with probFE of 0.2, 50 parti-
cles with probFE of 0.1, and 50 particles with probFE
of 0.05, with an expected number of particles doing



function evaluations on each iteration of 4, 5, and 2.5,
respectively. This suggests that there might be an op-
timal range for the expected number of particles do-
ing function evaluations during an iteration, and that
this range may be similar to the optimal range for the
number of informants in the work of Garcı́a-Nieto and
Alba. We are currently conducting experiments to fur-
ther investigate this idea.

5 CONCLUSIONS AND FURTHER
WORK

We have presented GR-PSO, a PSO algorithm that
conserves function evaluations by probabilistically
choosing a subset of particles smaller than the entire
swarm on each iteration and allowing only those par-
ticles to perform function evaluations. The function
evaluations conserved in this fashion are used to in-
crease the number of particles in the swarm and/or the
number of iterations. In spite of the potential loss of
information resulting from this restriction on the use
of function evaluations, GR-PSO performs as well as,
or better than, the standard PSO algorithm on a set of
standard benchmark functions.

GR-PSO also provides a novel way to control ex-
ploration and exploitation. Given a lower probability
of doing function evaluations, information about new
global and personal bests is delayed and the balance
is tipped away from exploitation toward exploration.
This opens up the possibility of using probFE as a
mechanism to dynamically adjust the relative levels
of exploration and exploitation in response to the be-
havior of the swarm.

The conservation technique we tested is very sim-
ple; there are many possibilities for more sophisti-
cated conservation mechanisms. It is possible that
adaptive approaches that take into account various
factors, such as the recent history of the particle and
the status of other particles in the particle’s neighbor-
hood, could improve performance. For example, per-
haps a particle should decide whether to skip a func-
tion evaluation based on the distance it has moved
and/or the change in its function value in the last k
moves. Another possibility that would still conserve
function evaluations, but allow particles to possibly
recover missed personal bests, would be for each par-
ticle to save the k most recent positions for which
it did not do a function evaluation, then pick one of
those randomly and evaluate it, adopting it as its per-
sonal best if it is better than its current personal best.

Perhaps more importantly, however, the idea of
conserving function evaluations suggests that it would
be fruitful to think of function evaluations as a

scarce resource that needs to be allocated over time.
This opens up the possibility of incorporating game-
theoretic mechanisms for resource allocation into the
PSO framework. For example, an auction mechanism
could be used to allocate function evaluations either to
individuals, or to neighborhoods that would, in turn,
allocate them to the individuals in those neighbor-
hoods. The amount of “money” that a particle has for
bidding purposes could depend on many things: for
example, how good its current solution is, the trend
of its personal best values, and the number of new
neighborhood bests it has been responsible for over
some period of time. A neighborhood could acquire
resources for bidding that depend on similar factors,
as well as how good its best is compared to the bests
of other neighborhoods. We are currently exploring
the feasibility of this approach.
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