
DC-SSAT: A Divide-and-Conquer Approach to
Solving Stochastic Satisfiability Problems Efficiently∗

Stephen M. Majercik
Department of Computer Science

Bowdoin College
Brunswick, ME, USA 04011
smajerci@bowdoin.edu

Byron Boots
Center for Cognitive Neuroscience

Duke University
Durham, NC, USA 27708

bboots@duke.edu

Abstract

We present DC-SSAT, a sound and complete divide-and-
conquer algorithm for solving stochastic satisfiability (SSAT)
problems that outperforms the best existing algorithm for solv-
ing such problems (ZANDER) by several orders of magnitude
with respect to both time and space. DC-SSAT achieves this
performance by dividing the SSAT problem into subproblems
based on the structure of the original instance, caching the vi-
able partial assignments (VPAs) generated by solving these
subproblems, and using these VPAs to construct the solution
to the original problem. DC-SSAT does not save redundant
VPAs and each VPA saved is necessary to construct the solu-
tion. Furthermore, DC-SSAT builds a solution that is already
human-comprehensible, allowing it to avoid the costly solu-
tion rebuilding phase in ZANDER. As a result, DC-SSAT is
able to solve problems using, typically, 1-2 orders of magni-
tude less space than ZANDER, allowing DC-SSAT to solve
problems ZANDER cannot solve due to space constraints.
And, in spite of its more parsimonious use of space, DC-
SSAT is typically 1-2 orders of magnitude faster than ZAN-
DER. We describe the DC-SSAT algorithm and present em-
pirical results comparing its performance to that of ZANDER
on a set of SSAT problems.

Introduction
Stochastic Boolean satisfiability (SSAT) (Papadimitriou
1985; Littman, Majercik, & Pitassi 2001) is a generalization
of satisfiability (SAT) that is similar to quantified Boolean
formulae (QBF). The ordered variables of the Boolean for-
mula in an SSAT problem, instead of being existentially or
universally quantified, are existentially or randomly quanti-
fied. Randomly quantified variables are true with a cer-
tain probability, and an SSAT instance is satisfiable with some
probability that depends on the ordering of and interplay be-
tween the existential and randomized variables. The goal is
to choose values for the existentially quantified variables that
maximize the probability of satisfying the formula.

Like QBF, SSAT is PSPACE-complete, so it is theoreti-
cally possible to transform many probabilistic planning and
reasoning problems of great practical interest into SSAT in-
stances (Littman, Majercik, & Pitassi 2001). While such
theoretically guaranteed translations are not always prac-
tical, previous work has shown that, in some cases, the

∗ Appears in the Proceedings of the Twentieth National Confer-
ence on Artificial Intelligence, pages 416-422, AAAI Press, 2005.
Copyright c© 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

transformation, and the solution of the resulting SSAT in-
stance, can be done efficiently. For example, Majercik &
Littman (2003) have developed ZANDER, a probabilistic
planner that works by translating the planning problem into
an SSAT instance and solving that problem to get the optimal
plan. Freudenthal & Karamcheti (2003) have shown that
SSAT can form the basis of a trust management (TM) sys-
tem that addresses some of the limitations in state-of-the-art
TM systems. And there is evidence that a belief net infer-
encing problem could be solved efficiently by translating it
into a MAJSAT instance, a type of SSAT problem (Roth 1996;
Bacchus, Dalmao, & Pitassi 2003). Thus, a more efficient
SSAT solver could potentially give us better solution meth-
ods for a number of important practical problems. In addi-
tion, the development of such a solver would be valuable for
the insights it might provide into solving probabilistic rea-
soning problems, in general, and other PSPACE-complete
problems, such as QBF.

We describe DC-SSAT, a novel divide-and-conquer tech-
nique for solving SSAT problems that outperforms the best
existing SSAT solver by several orders of magnitude with re-
spect to both time and space. In the following sections, we
describe the SSAT problem and DC-SSAT, present and dis-
cuss performance comparisons on a set of SSAT problems,
and conclude with a discussion of related and further work.

Stochastic Satisfiability
An SSAT problem Φ = Q1v1 . . . Qnvnφ is specified by a
prefix Q1v1 . . . Qnvn that orders a set of n Boolean variables
V = {v1, . . . , vn} and a matrix φ that is a Boolean for-
mula constructed from these variables. The prefix associates
a quantifier Qi, either existential (∃i) or randomized (

Rπi
i),

with the variable vi. The value of an existentially quanti-
fied (existential) variable can be set arbitrarily by a solver;
the value of a randomly quantified (randomized) variable is
determined stochastically by πi, a rational number specifying
the probability that vi will be true. A sub-block of variables
in the prefix is any sequence of adjacent, similarly quanti-
fied variables; a block is a maximal sub-block. An existen-
tial (randomized) block is a block of existential (randomized)
variables. In this paper, we will use x1, x2, . . . for existential
variables and y1, y2, . . . for randomized variables.

The matrix φ is assumed to be in conjunctive normal form,
i.e. a set C of m conjuncted clauses, where each clause is a
set of distinct disjuncted literals. A literal l is either a variable
v (a positive literal) or its negation v (a negative literal). For

a literal l, |l| is the variable v underlying that literal and l is
the “opposite” of l, i.e. if l is v, l is v; if l is v, l is v. A
literal l is true if it is positive and |l| has the value true,
or if it is negative and |l| has the value false. A literal
is existential (randomized) if |l| is existential (randomized).
The probability that a randomized variable v has the value
true (false) is denoted Pr[v] (Pr[v]). The probability
that a randomized literal l is true is denoted Pr[l]. A clause
is satisfied if at least one literal is true, and unsatisfied, or
empty, if all its literals are false. The formula is satisfied if
all its clauses are satisfied.

A partial assignment α of the variables V is a sequence
of k ≤ n literals l1; l2; . . . ; lk such that no two literals in
α have the same underlying variable. Given li and lj in an
assignment α, i < j implies that the assignment to |li| was
made before the assignment to |lj |. A positive (negative) lit-
eral v (v) in an assignment α indicates that the variable v has
the value true (false). The notation Φ(α) denotes the
SSAT problem Φ′ remaining when the partial assignment α
has been applied to Φ (i.e. clauses with true literals have
been removed from the matrix, false literals have been re-
moved from the remaining clauses in the matrix, and all vari-
ables and associated quantifiers not in the remaining clauses
have been removed from the prefix) and φ(α) denotes φ′,
the matrix remaining when α has been applied. Similarly,
given a set of literals L, such that no two literals in L have
the same underlying variable, the notation Φ(L) denotes the
SSAT problem Φ′ remaining when the assignments indicated
by the literals in L have been applied to Φ, and φ(L) denotes
φ′, the matrix remaining when the assignments indicated by
the literals in L have been applied. A literal l 6∈ α is active if
some clause in φ(α) contains l; otherwise it is inactive.

Given an SSAT problem Φ, the maximum probability of
satisfaction of φ, denoted Pr[Φ], is defined according to the
following recursive rules:
1. If φ contains an empty clause, Pr[Φ] = 0.0.
2. If φ is the empty set of clauses, Pr[Φ] = 1.0.
3. If the leftmost quantifier in the prefix of Φ is existen-

tial and the variable thus quantified is v, then Pr[Φ] =
max(Pr[Φ(v)], P r[Φ(v)]).

4. If the leftmost quantifier in φ is randomized and the vari-
able thus quantified is v, then Pr[Φ] = (Pr[Φ(v)] ×
Pr[v]) + (Pr[Φ(v)]× Pr[v]).
The solution of an SSAT instance is an assignment of truth

values to the existential variables that yields the maximum
probability of satisfaction, denoted Pr[Φ]. Since the values
of existential variables can be made contingent on the values
of randomized variables that appear earlier in the prefix, the
solution is, in general, an assignment tree that specifies the
optimal assignment to each existential variable xi for each
possible instantiation of the randomized variables that pre-
cede xi in the prefix.

DC-SSAT
A direct implementation of the rules defining Pr[Φ] would
yield a functional, though impractical, SSAT solver. ZAN-
DER, the most highly optimized SSAT solver developed by

Majercik & Littman (2003), improves on this by adapting
the Davis-Putnam-Logemann-Loveland (DPLL) SAT algo-
rithm (Davis, Logemann, & Loveland 1962). It traverses
the tree of possible assignments, following the variable or-
dering in the prefix of Φ, and applies the rules described
above to calculate Pr[Φ]. The solver prunes subtrees, when
possible, by using a unit propagation rule adapted from
DPLL and thresholding. Details are available in Majercik &
Littman (2003). Even with unit propagation and threshold-
ing, however, this DPLL-based approach is often infeasible
due to the size of the assignment tree that must still be ex-
plored. Furthermore, ZANDER, like DC-SSAT, produces
the optimal solution tree (the size of which can be exponen-
tial in the number of randomized variables). Since differ-
ent partial assignments often lead to the same subproblem,
the efficiency of a solver can be improved by caching and
reusing the results of solved subproblems. ZANDER relies
heavily on this technique (called memoizing in Majercik &
Littman (2003)) to solve larger problems. ZANDER, how-
ever, saves every solved subproblem, which can quickly ex-
haust the available memory, and often only a small percent-
age of cached subproblems are actually reused.

Since ZANDER is tailored to solve SSAT encodings of
probabilistic planning problems (Majercik & Littman 2003),
DC-SSAT was developed to solve the same kind of prob-
lems. In this paper, we focus on completely observable prob-
abilistic planning (COPP) problems and so use a version of
ZANDER that is optimized for this type of problem. DC-
SSAT however, can be generalized to solve SSAT encodings
of partially observable planning problems and general SSAT
problems; we will describe this in a future paper.

The key idea underlying DC-SSAT is to enlarge the size
and scope of the units being manipulated by the solver. In or-
der to solve an SSAT problem, any solver needs to consider,
directly or indirectly, every possible satisfying assignment.
Rather than covering this territory at the fine-grained reso-
lution of considering possible values for individual variables,
DC-SSAT covers this territory more efficiently by construct-
ing subproblems that include multiple variables, and caching
information from the solution of these subproblems. Fur-
thermore, these subproblems are based on the structure of
the particular SSAT instance being solved; the variable or-
dering in the prefix and the relationships among the vari-
ables induced by the clauses dictate the composition of these
building blocks for the final solution. Each of these build-
ing blocks is necessary to compute the final solution and,
together, they almost always require much less space than
ZANDER’s cached subproblems, resulting in a more effi-
cient calculation of the solution.

An SSAT encoding of a COPP problem (a COPP-SSAT
problem) has some structural characteristics that are ex-
ploited by both DC-SSAT and ZANDER. For DC-SSAT,
the important characteristics are that 1) a COPP-SSAT prob-
lem always starts with an existential block, and 2) variables
in an existential block appear in clauses only with vari-
ables from the same existential block and variables from
adjacent randomized blocks. Given SSAT problem Φ =
Q1v1 . . . Qnvnφ, let X ⊆ V be the set of all existential vari-
ables in Φ and let Y ⊆ V be the set of all randomized vari-

ables in Φ. We define the following relation R on the set of
variables X . Variable x1 is related to variable xm if there is
a sequence of clauses c1, . . . cm, m ≥ 1, such that x1 is in
clause c1, xm is in clause cm, and, if m > 1, the clauses in
each pair ci and ci+1, 1 ≤ i < m, both contain a common
variable xi ∈ X . Clearly, R defines an equivalence rela-
tion on X . Note that because of the special structure of a
COPP-SSAT problem, the variables in each existential block
will form an equivalence class. For each distinct equivalence
class Xi = [x]R ⊆ X induced by R:

1. Let Ci = {ci | l ∈ ci ∧ |l| ∈ Xi }, the set of clauses
containing at least one literal whose underlying variable is
in Xi.

2. Let Wi =
⋃

ci∈Ci
{|l| | l ∈ ci}, the set of variables under-

lying the literals in the clauses in Ci. Clearly, Xi ⊆ Wi.

3. Put a clause cπ containing all random literals in the clause
set Ci such that the number of literals in cπ whose under-
lying variables are in Wi is maximized, breaking ties in
favor of the clause set containing the left-most existential
variable in the prefix of Φ. Let Yi be the set of all random-
ized variables in such clauses added to Ci.

Let Vi = Wi ∪ Yi, and let Q1v1 . . . Qmivmi , (mi = |Vi|) be
the prefix obtained by sequencing the variables in Vi along
with their quantifiers such that this sequence respects the or-
dering in the prefix of Φ. Let φi = Ci. Then subprob-
lem Φi = Q1v1 . . . Qmivmiφi. Finally, we define an or-
dering on the subproblems. Define rank(v), the rank of
a variable v ∈ V , to be the number of its position in
the prefix Q1v1 . . . Qnvn, i.e. v1 has rank 1, v2 has rank
2, etc. Then subproblem Φi precedes subproblem Φj if
minv∈Vi(rank(v)) < minv∈Vj (rank(v)), i.e. subproblems
are ordered according to the rank of the variable in the sub-
problem that occurs earliest in prefix of Φ. In a COPP-SSAT
problem, this means that subproblems will be in the same
order as the existential blocks in the prefix of Φ. Creating
these subproblems can be done in time O(n + m) in a sweep
through the variables, assuming that each variable points to a
list of clauses containing that variable.

DC-SSAT solves each subproblem Φ1,Φ2, . . . ,Φs using
a DPLL-based algorithm to generate a set of viable partial
assignments (VPAs) that satisfy the clauses in that subprob-
lem, and then uses these VPAs to construct the solution to Φ.
A good analogy is that in the same way a DPLL-based SSAT
solver does a depth-first search on variable assignments, DC-
SSAT does a depth-first search on VPAs. More formally, a
VPA α in subproblem Φi is a partial assignment to the vari-
ables Vi such that the sequence of literals in α respects the
ordering of the prefix of Φi and all the clauses in Ci are sat-
isfied. The probability of α is defined as Πl∈α∧|l|∈Y Pr[l],
where we are using set membership notation to indicate that
l is in the sequence of literals constituting the assignment α.
Two VPAs, αi and αj , are contradictory if, for any l ∈ αi, we
have l ∈ αj . The union of two contradictory VPAs, αi∪αj , is
the empty assignment α∅ and the probability of α∅ is defined
to be 0.0. Two VPAs, αi and αj , agree (αi ∼ αj) or are com-
patible iff they are not contradictory. Let αi ∼ αj for VPAs
αi and αj . Then the set of literals in αk, the union of αi and

αj , is the union of the literals in αi and αj , sequenced to re-
spect the variable ordering in the prefix of Φ. The probability
of αk is defined as before. This definition can be extended to
the union of a finite number of VPAs in a natural way.

Let VPA1, VPA2, . . . , VPAs be the sets of VPAs generated
by the solution of subproblems Φ1,Φ2, . . . ,Φs. Let VPAΦ

be the set of all non-empty VPAs obtained by taking the
union of VPAs in each s-tuple of VPA1×VPA2×. . .×VPAs.
It is easy to see that each VPA in VPAΦ satisfies all the
clauses in Φ and so could be a path in the optimal assignment
tree for Φ. In fact, we have the following lemmas:

Lemma 1: Each path in the optimal assignment tree for Φ
describes a VPA that is contained in VPAΦ.

Lemma 2: All VPAs in VPAΦ must be considered in order to
construct the optimal assignment tree for Φ.

Two VPAs, αi and αj , existential-agree or are existential-
compatible (αi ∼∃ αj) iff for each existential literal li in αi

and existential literal lj in αj , if |li| = |lj | and li 6= lj , there
is a random literal lk in that appears before li in αi such
that lk appears before lj in αj . In other words, αi and αj

cannot prescribe a different value for an existential variable
unless some randomized variable that appears earlier in
both VPAs has a different value. Thus, two different, but
existential-compatible, VPAs αi and αj can be combined
to produce an assignment tree with a single path that splits
at some point. The initial common path segment is the
union of the compatible initial subsequences of αi and αj ,
and the path splits at the randomized variable whose value
they disagree on. The probability of this tree is defined
in a manner similar to the rules defined for determining
Pr[Φ]: the probability of an existential variable node is the
maximum of the probabilities of its children; the probability
of a randomized variable node is the probability-weighted
average of the probabilities of its children. In both cases,
the probability of a missing child is 0.0. This combination
operation can be extended to a finite number of VPAs in
a natural way; we define a viable solution (VS) as the
combination of a finite set of existential-compatible VPAs
from VPAΦ. Then we have:

Theorem 1: The optimal assignment tree for Φ is a viable
solution with maximal probability.

One can think of the solution tree for Φ as the “best” com-
bination of existential-compatible VPAs in VPAΦ. Thus, a
straightforward way of calculating the solution to Φ would
be to generate all viable solutions and calculate their proba-
bilities, selecting one with maximal probability. But, gener-
ating VPAs in each subproblem independently can produce
many VPAs that could never be part of a solution because
they contradict every VPA that could be part of a solution
in earlier subproblems and so could not be part of a path in
any possible solution tree. We can avoid this, and speed up
the solution process considerably, by using the VPAs gener-
ated by earlier subproblems to constrain the VPAs generated
by the remaining subproblems. Since the variables in an exis-
tential block in a COPP-SSAT problem appear in clauses only
with variables from the same block and/or variables from ad-
jacent randomized blocks, the variables shared between sub-

problems Φi and Φi+1 will be some number of variables that
appear at the end of the prefix of Φi and the beginning of
the prefix of Φi+1. While DC-SSAT is solving Φi, it can
generate all the instantiations of the variables it shares with
Φi+1 that might be part of a solution. An assignment β to
these shared variables is called a branch assignment (BA),
since these variables are all randomized variables and consti-
tute the possible branches in the solution tree that Φi could
generate. We will denote the set of BAs between Φi and
Φi+1 by Bi+1

i and each βj ∈ Bi+1
i will point to a struc-

tured VPA list (see next paragraph) of those VPAs in Φi that
agree with βi. Furthermore, the solution of Φi−1 has already
generated Bi

i−1, which is the set of possible assignments to
the variables shared between Φi−1 and Φi, i.e. all the possi-
ble assignments to the initial variables in the prefix of Φ. So
DC-SSAT can use each βj ∈ Bi

i−1 as a starting point from
which to solve Φi, thus guaranteeing that all VPAs generated
will agree with some VPA in Φi−1; any VPA α thus gener-
ated is added to the VPA list of βj ∈ Bi

i−1 and set to point
to the BA βk ∈ Bi+1

i that it is compatible with, creating that
BA if it does not already exist.

The structured list of VPAs that βj ∈ Bi
i−1 points to is a

list of existential assignments (EAs), i.e. assignments to the
existential variables that subproblem Φi was based on that
are compatible with some VPA in Bi

i−1. Eβj (βj ∈ Bi
i−1)

denotes the list of EAs that agree with the BA βj , and εk ∈
Eβj points to the list of VPAs in Φi that agree with both the
BA βj and the EA εk. Finally, each VPA α in this list points
to the BA βp ∈ Bi+1

i that α agrees with, i.e. the instantiation
of the shared variables that this VPA would give rise to and
that the following subproblem would have to “respond to.”
We will denote the BA βp ∈ Bi+1

i that α points to as α→β .
For each VPA α in Φs, α→β is defined to be NULL. This
process of generating and installing VPAs can be done in time
linear in the number of VPAs generated. Pseudocode for this
process follows:
PROCESS-VPAS(Φ)

partition Φ into subproblems Φ1,Φ2, . . . ,Φs

for each Φi, i = 1 to s:
for each βj ∈ Bi

i−1:
solve Φi(βj) using a DPLL-based algorithm.
for each VPA α generated:

if (¬∃ εk ∈ Eβj
, such that α ∼∃ εk)

create εk such that α ∼∃ εk

add α to the list of VPAs in εk

if (i < s ∧ ¬∃ βp ∈ Bi+1
i , such that α ∼ βp)

create βp ∈ Bi+1
i such that α ∼ βp

if (i < s) set α→β to βp; else set α→β to NULL

We define Pr[βj], the probability of a BA βj ∈ Bi
i−1, as

maxεk∈Eβj
Pr[εk] where Pr[εk] is defined recursively:

Pr[εk] =
{ ∑

α∈εk
Pr[α→β] if α→β 6= NULL∑

α∈εk
Pr[α] otherwise

where α→β ∈ Bi+1
i . Since a COPP-SSAT problem always

starts with an existential block, the only branch instantiation
in Φ1 is β∅, the empty BA, so B1

0 = {β∅}. All VPAs in
Φ1 are in the structured list pointed to by this BA since

all VPAs are compatible with β∅, and it can be shown that
Pr[Φ] = Pr[β∅]. Thus, DC-SSAT finds the solution to Φ
by computing Pr[β∅] and, in the process makes each VPA α
in each EA point to the optimal EA in the next subproblem,
i.e. the optimal setting of the existential variables in the
next subproblem given the current partial assignment. Thus,
DC-SSAT avoids building a solution tree explicitly and
prints the solution tree by following these pointers from the
optimal EA in the first subproblem. As a final optimization,
DC-SSAT caches the probability of each EA as it is cal-
culated, so as DC-SSAT traverses the tree of VPAs it can
avoid recalculating the probability of an EA. It can be shown
that (like ZANDER):
Theorem 2: DC-SSAT is a sound and complete algorithm
for solving COPP-SSAT problems.

An example will help clarify the algorithm. Suppose we
have the following SSAT problem:

∃x1

R0.2y1 ∃x2

R0.6y2 {{x1, y1}, {x1, y1}, {y1, x2, y2},
{y1, x2, y2}, {y1, x2, y2}, {x2, y2}, {x2, y2}} .

Since the existential variables x1 and x2 are not related under
R, each one forms its own equivalence class. The variables
x1 and y1 and the first two clauses comprise Φ1, and the vari-
ables y1, x2, and y2 and the remaining clauses comprise Φ2.

DC-SSAT solves Φ1(β∅), generating two VPAs: α1 =
x1; y1 and α2 = x1; y1. If α1 is generated first, DC-SSAT
creates (ε1 = x1) ∼∃ α1, puts ε1 in Eβ∅ and puts α1 in the
list of VPAs in ε1. Also, since B2

1 = ∅, DC-SSAT creates
β1 = y1, puts β1 in B2

1 , and makes α1 point to β1. Since
α2 6∼∃ ε1 ∈ Eβ∅ , DC-SSAT creates (ε2 = x1) ∼∃ α2,
adds ε2 to Eβ∅ and puts α2 in the list of VPAs in ε2. And,
since α2 6∼ β1 ∈ B2

1 , DC-SSAT creates β2 = y1, adds β2 to
B2

1 , and makes α2 point to β2. Since there are no more BAs
in B1

0 , DC-SSAT has finished processing Φ1. Note that B2
1

now contains a list of viable assignments to the variables that
are shared by Φ1 and Φ2.

DC-SSAT next solves Φ2 by looking for assignments to
the variables in Φ2 that extend the assignments in B2

1 and
satisfy the clauses in Φ2. It starts with β1 = y1. This gen-
erates two VPAs: α3 = y1;x2; y2 and α4 = y1;x2; y2. If
α3 is generated first, DC-SSAT creates (ε3 = x2) ∼∃ α3,
puts ε3 in Eβ1 and puts α3 in the list of VPAs in ε3. Since
α4 6∼∃ ε3 ∈ Eβ1 , DC-SSAT creates (ε4 = x2) ∼∃ α4, adds
ε4 to Eβ1 , and puts α4 in the list of VPAs in ε4. Similarly,
DC-SSAT finds that α5 = y1;x2; y2 extends β2 = y1, so
(ε5 = x2) ∼∃ α5 is placed in Eβ2 , and α5 is placed in the
list of VPAs in ε5. Since there are no more subproblems,
DC-SSAT makes α3, α4, and α5 all point to NULL.

DC-SSAT then does a depth-first search of the VPAs,
guided by the structure of the VPA lists, computing Pr[Φ]
recursively. Briefly, α1, the VPA associated with ε1 = x1

agrees with α3, the VPA associated with ε3 = x2 and this
solution (x1 = true, x2 = true) has a probability of satis-
faction of 0.12 (both y1 and y2 must be true). The VPA α1

also agrees with α4, the VPA associated with ε4 = x2, but
this solution (x1 = true, x2 = false) has a probability
of satisfaction of only 0.08 (y1 must be true and y2 must
be false) and is rejected. The VPA α2, associated with

Problem Size Number of Steps =
(States in Statistic Number of ECs/SPs
Plan Prob) 5 t 50
COF NV 103 19t + 8 958
(256) NC 290 56t + 10 2810

AVSP 27.0 27.0 27.0
ACSP 58.0 ∼ 57 56.2

SPF NV 103 19t + 8 958
(256) NC 362 70t + 12 3512

AVSP 27.0 27.0 27.0
ACSP 72.4 ∼ 71 70.2

FAC NV 276 52t + 16 2616
(65536) NC 2007 397t + 22 19872

AVSP 68.0 68.0 68.0
ACSP 401.4 ∼ 399 397.4

LI10 NV 145 27t + 10 1360
(1024) NC 660 128t + 20 6420

AVSP 37.0 37.0 37.0
ACSP 132.0 ∼ 130 128.4

EX4 NV 59 11t + 4 554
(16) NC 178 34t + 8 1708

AVSP 15.0 15.0 15.0
ACSP 35.6 ∼ 35 34.2

NV=Num Vars, NC=Num Clauses, EC=Equiv Class,
SP=Subproblem, AVSP=Avg NV/SP, ACSP=Avg NC/SP

Table 1: Problem and decomposition characteristics.

ε2 = x1 agrees with α5, the VPA associated with ε5 = x2

and this solution (x1 = false, x2 = true) has a probabil-
ity of satisfaction of 0.48 (y1 must be false and y2 must be
true), so this is the optimal assignment.

Experimental Results
We tested DC-SSAT and ZANDER on a set of COPP-SSAT
problems adapted from Majercik & Littman (2003) (COF =
coffeebot, GOx = general-operations-x) and from (Hoey et
al. 1999) (FAC = factory, EX4 = exponential04, LI10 = lin-
ear10), and on one additional problem (SPF = spearfishing).
We omit problem descriptions, but provide information re-
garding problem size and the DC-SSAT decomposition of
each problem in Tables 1 and 2. Tables 3 and 4 describe
resource usage on problem instances of increasing size; the
better time/space usage in each case is indicated in bold face.
Reported results are representative of all results obtained. All
tests were run on a Power Mac G5 with dual 2.5 GHz CPUs, 2
GB RAM, 512KB L2 cache/CPU, running Mac OS X 10.3.8.
We omit probabilities of satisfaction due to lack of space.

In the COF problem, DC-SSAT is 1-2 orders of magnitude
faster and uses 1-2 orders of magnitude less space (Table 3).
In the largest COF problem that ZANDER was able to solve
before exhausting memory (the 110-step problem, not shown,
with 2098 variables and 6170 clauses), ZANDER required
43.61 CPU seconds and used 1411.32 MB of memory, while
DC-SSAT was able to solve the problem in 0.35 CPU second
using 25.12 MB of memory, 2 orders of magnitude faster and

Problem Size Number of Steps =
(States in Statistic Number of ECs
Plan Prob) 5 t 50
GO6 NV 107 20t + 7 1007
(128) NC 374 72t + 14 3614

AVSP 27.0 27.0 27.0
ACSP 74.8 ∼ 73 72.3

GO7 NV 123 23t + 8 1158
(256) NC 451 87t + 16 4366

AVSP 31.0 31.0 31.0
ACSP 90.2 ∼ 88 87.3

GO8 NV 139 26t + 9 1309
(512) NC 533 103t + 18 5168

AVSP 35.0 35.0 35.0
ACSP 106.6 ∼ 104 103.4

GO9 NV 155 29t + 10 1460
(1024) NC 620 120t + 20 6020

AVSP 39.0 39.0 39.0
ACSP 124.0 ∼ 121 120.4

NV=Num Vars, NC=Num Clauses, EC=Equiv Class,
SP=Subproblem, AVSP=Avg NV/SP, ACSP=Avg NC/SP

Table 2: Problem and decomposition characteristics.

using 2 orders of magnitude less space.
Table 3 shows that, in most cases, ZANDER exhausted

memory on the SPF problem and was timed out after 20 min-
utes on the FAC problem (which provided the largest SSAT
instances in our test set; see Table 1). In the 10-step SPF
problem, the one problem that both solvers completed that
had a non-zero probability of satisfaction, the difference is
dramatic: DC-SSAT was 3 orders of magnitude faster and
used 2 orders of magnitude less space. Although ZANDER
frequently uses much of the time and space it consumes to
rebuild its solution tree, this was not the case in SPF and
FAC, where the resources were consumed mostly in the so-
lution calculation phase. We argue below that this is due to
the larger number of actions (which increases the size of the
existential blocks) in SPF (6 actions) and FAC (14 actions)
compared to COF (4 actions).

Neither the SSAT problem size nor the size of the subprob-
lems in the DC-SSAT decomposition seems to be a reliable
indicator of DC-SSAT’s performance; e.g. the 50-step FAC
problem is approximately 2-3 times larger than the 50-step
LI10 problem on all size statistics (Table 1), but DC-SSAT’s
solution time for that FAC problem was approximately 1

4 its
solution time for the LI10 problem. LI10 (like EX4) is an ar-
tificial problem; together, they shed some light on this issue
and on the generally extreme differences between the per-
formances of DC-SSAT and ZANDER. The LI10 problem
requires a number of time steps (existential blocks) that is
linear in the number of variables in each of these blocks in
order to obtain a nonzero probability of satisfaction, although
the actions must be executed in just the right order. Aided by
unit propagation, ZANDER quickly establishes the correct
sequence of actions, starting with the final action and work-
ing its way back to the initial action (although ZANDER

Prob- Sol- Re- Resource Usage by Number of Steps in Plan
lem ver source 5 10 15 20 25 30 35 40 45 50
COF DC CS 0.02 0.02 0.03 0.04 0.07 0.07 0.08 0.12 0.12 0.14

MB 0.04 0.27 0.63 1.08 1.63 2.27 3.01 3.84 4.64 5.65
ZA CS 0.06 0.03 0.07 0.25 0.84 2.19 3.85 5.62 7.53 9.48

MB 0.00 0.14 1.55 9.46 38.78 111.59 192.60 273.65 354.72 435.83
SPF DC CS 0.01 0.03 0.06 0.08 0.11 0.13 0.17 0.20 0.22 0.25

MB 0.07 0.48 1.07 1.80 2.70 3.74 4.94 6.30 7.59 9.23
ZA CS 0.02 29.87 – – – – – – – –

MB 0.01 28.69 M M M M M M M M
FAC DC CS 0.17 2.65 7.81 14.26 19.95 26.01 30.51 37.20 43.36 50.80

MB 0.70 16.44 50.47 100.27 162.08 237.36 326.11 428.33 544.02 673.18
ZA CS 3.47 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+

MB 0.99 – – – – – – – – –
LI10 DC CS 0.11 8.71 25.12 44.55 66.94 92.01 119.16 146.81 178.58 205.37

MB 1.20 24.53 66.75 126.72 196.84 280.08 376.46 497.12 621.39 758.78
ZA CS 0.02 0.02 0.47 2.60 7.60 24.83 – – – –

MB 0.00 0.00 3.83 37.48 206.83 1002.53 M M M M
EX4 DC CS 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.06 0.06

MB 0.01 0.07 0.19 0.37 0.56 0.81 1.09 1.35 1.70 2.08
ZA CS 0.00 0.03 39.89 201.93 291.22 355.95 1200+ 1200+ 1200+ 1200+

MB 0.00 0.00 0.00 0.04 0.27 0.99 – – – –
DC=DC-SSAT, ZA=ZANDER, CS=CPU secs, MB=MB mem, 1200+=Timed out, M=Mem exhausted, 0.00=Rounding

Table 3: DC-SSAT consistently outperforms ZANDER on the test problems.

exhausts memory as the problem size increases; see Table 3).
DC-SSAT is fooled by the fact that each of the 10 actions
can lead to a different state, creating 10 possible BAs in B2

1
and forcing DC-SSAT to search through a large number of
VPA combinations; its solution times on smaller problems in
which ZANDER does not exhaust memory are 1-2 orders of
magnitude larger than ZANDER’s.

By contrast, the EX4 problem requires a number of time
steps (existential blocks) that is exponential in the number of
variables in each of these blocks in order to obtain a nonzero
probability of satisfaction, and there are many relatively long
paths in the tree of assignments that lead to unsatisfiabil-
ity. ZANDER builds a huge tree exploring these paths, and
caches an enormous number of subproblems, none of which
it is ever able to use. DC-SSAT however, by focusing on
“reachable” VPAs, is able to establish quickly (and using lit-
tle space) which actions are potentially useful. For example,
in subproblem Φ1, there are only two possible BAs in B2

1 (no
matter how many actions there are), which greatly limits the
VPAs generated in subproblem Φ2. (ZANDER would ex-
plore a subtree for each possible action.) DC-SSAT is con-
sistently 3-4 orders of magnitude faster on these problems,
and, although ZANDER uses modestly less space on smaller
instances of this problem, DC-SSAT uses less space by the
time the number of plan steps reaches 30 (Table 3).

ZANDER’s performance seems to be most strongly in-
fluenced by the number of actions in the problem (the size
of the existential blocks). Each additional existential vari-
able creates another subtree for ZANDER to build and ex-
plore, and this occurs at multiple levels of the tree, produc-
ing an exponential impact. The effect of this seems clear in

SPF and FAC, and in the series of GOx problems (Table 4),
where ZANDER’s performance deteriorates as x, the num-
ber of actions, increases. DC-SSAT’s performance seems
more strongly influenced by the number of branch assign-
ments produced in each subproblem (the size of the random-
ized blocks), since this dictates the number of VPA combina-
tions it must explore; thus, DC-SSAT is more likely to have
difficulty as both the number of randomized variables and the
percentage of their instantiations that are viable increases.

Related and Further Work
Our main contribution is to show that a useful class of SSAT
problems, COPP-SSAT problems, can be solved by a divide-
and-conquer technique that is efficient in terms of both time
and space. Our approach is similar to SAT cut-set approaches
that attempt to divide the SAT problem into subproblems by
instantiating a subset of variables. In a COPP-SSAT prob-
lem, the variables in the branching assignments (BAs) can
be viewed as a cut-set that decomposes the problem. Instead
of instantiating variables in the cut-set and propagating this
information, however, DC-SSAT uses the BAs as a conduit
for information between adjacent subproblems. This inter-
play between subproblems, mediated by a subset of common
variables, is similar to the delayed cut variable binding tech-
nique of Park & Van Gelder (1996).

Although we view DC-SSAT primarily as a contribution
to solving SSAT problems efficiently, our tests suggest that it
is also a viable technique for solving probabilistic planning
problems. (For a discussion of the probabilistic planning lit-
erature see Majercik & Littman (2003).) In fact, since the

Prob- Sol- Re- Resource Usage by Number of Steps in Plan
lem ver source 5 10 15 20 25 30 35 40 45 50
GO6 DC CS 0.03 0.11 0.22 0.34 0.43 0.53 0.68 0.76 0.84 0.96

MB 0.31 2.44 5.43 9.22 13.78 19.13 26.07 33.12 40.95 49.56
ZA CS 0.07 0.65 0.73 1.17 2.95 9.08 26.28 – – –

MB 0.04 0.77 3.25 20.75 104.82 402.50 1254.17 M M M
GO7 DC CS 0.05 0.29 0.57 0.87 1.21 1.57 1.99 2.46 2.95 3.46

MB 0.49 5.38 13.05 22.22 34.37 47.42 64.06 83.09 102.12 125.64
ZA CS 0.14 12.81 13.42 15.30 21.03 45.04 – – – –

MB 0.06 9.34 13.41 51.00 293.12 1379.37 M M M M
GO8 DC CS 0.06 1.02 2.54 4.59 7.11 10.24 13.70 17.87 20.71 23.60

MB 0.81 11.54 29.20 52.23 80.65 114.44 153.61 198.16 248.09 303.40
ZA CS 0.18 368.04 393.09 427.61 451.85 1200+ 1200+ 1200+ 1200+ 1200+

MB 0.09 228.36 234.54 301.16 878.43 – – – – –
GO9 DC CS 0.10 6.73 20.85 35.97 55.11 76.22 100.63 122.56 141.97 162.15

MB 1.18 24.07 64.16 120.40 185.86 270.46 370.00 474.25 602.14 731.77
ZA CS 0.26 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+

MB 0.00 – – – – – – – – –
DC=DC-SSAT, ZA=ZANDER, CS=CPU secs, MB=MB mem, 1200+=Timed out, M=Mem exhausted, 0.00=Rounding

Table 4: ZANDER’s performance deteriorates significantly as the number of actions in the GOx problems increases.

structure of a COPP-SSAT problem ensures that all the sub-
problems, except for the first and last ones, are isomorphic, it
might be possible to use the solution from the first of these to
extend the time horizon of the overall solution/plan an arbi-
trary number of steps at very little incremental cost, produc-
ing a planner that is able to solve very large problems effi-
ciently. We plan to implement this idea and test DC-SSAT
against other probabilistic planning techniques. Also, in a
future paper, we will show how DC-SSAT can be extended
to partially observable probabilistic planning problems and
to general SSAT problems. One difficulty here is that a VPA
in subproblem Φi may contain variables that are also in sub-
problem Φj , j > i + 1; hence, checking VPA compatibility
only between adjacent subproblems is no longer sufficient.
One consequence is that the depth-first search that calculates
Pr[Φ] must maintain a list of VPAs that contain variables in
later subproblems so that compatibility between non-adjacent
subproblems can be checked as needed.

There are other interesting directions for further work. In
the case of general SSAT problems, can we characterize when
the DC-SSAT approach will be beneficial? It will fail if all
the existential variables are related and form a single equiv-
alence class, but what is the impact of the connection topol-
ogy in general? Variables that are far apart in the prefix, but
share a clause, may induce the solver to explore a long, un-
productive path. Assignment compatibility issues that were
local in a COPP-SSAT problem become global in the general
case. Walsh (2001) investigated the impact of the connection
topologies of graphs associated with real-world search prob-
lems and related this to the notion of a backbone (variables
that have the same value in all solutions). What role do these
notions play in SSAT problems?

Finally, although QBF problems do not require a solver to
consider all possible satisfying assignments, SSAT and QBF
are related; any QBF instance can be solved by transform-

ing it into an SSAT instance—replace the universal quantifiers
with randomized quantifiers and check whether Pr[Φ] = 1.0.
We are exploring whether the DC-SSAT approach could
form the basis for an efficient QBF solver that also produces
the solution tree in the case of an affirmative answer.

References
Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. Value elimi-
nation: Bayesian inference via backtracking search. In UAI-
2003, 20–28.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem proving. Communications of the
ACM 5:394–397.
Freudenthal, E., and Karamcheti, V. 2003. QTM: Trust
management with quantified stochastic attributes. Technical
Report TR2003-848, Courant Institute, NYU.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
UAI-99, 279–288.
Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001.
Stochastic Boolean satisfiability. Journal of Automated Rea-
soning 27(3):251–296.
Majercik, S. M., and Littman, M. L. 2003. Contingent plan-
ning under uncertainty via stochastic satisfiability. Artificial
Intelligence 147:119–162.
Papadimitriou, C. H. 1985. Games against nature. Journal
of Computer Systems Science 31:288–301.
Park, T. J., and Van Gelder, A. 1996. Partitioning methods
for satisfiability testing on large formulas. In CADE, 748–
762.
Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence 82(1–2):273–302.

Walsh, T. 2001. Search on high degree graphs. In IJCAI-01,
266–274.

