
 1

Memory!

 2

Java references
class Blob {...}

...

Blob b1 = new Blob();

Blob b2 = new Blob();

 3

Java references
class Blob {...}

...

Blob b1 = new Blob();

Blob b2 = b1;

 4

Pointer example
int *p; // &p == 0x0;

int x = 6; // &x == 0xf8;

int y = 3; // &y == 0x4;

 5

Pointer example
int *p; // &p == 0x0;

int x = 6; // &x == 0xf8;

int y = 3; // &y == 0x4;

p = &x;

 6

Pointer example
int *p; // &p == 0x0;

int x = 6; // &x == 0xf8;

int y = 3; // &y == 0x4;

p = &x;

y = 1 + *p;

 7

Pointer example
int *p; // &p == 0x0;

int x = 6; // &x == 0xf8;

int y = 3; // &y == 0x4;

p = &x;

y = 1 + *p;

*p = 100;

 8

Another pointer example
void swap(int* p1, int* p2) {
 int temp = *p1;
 *p1 = *p2;
 *p2 = temp;
}
void main() {
 int x = 5;
 int y = 3;
 // x is 5, y is 3
 swap(&x, &y);
 // x is 3, y is 5
}

 9

A Pointer on Pointers
● “… there are two things traditionally taught in

universities as a part of a computer science
curriculum which many people just never really
fully comprehend: pointers and recursion.”
– Joel Spolsky (founder, Stack Overflow)

 10

A Pointer on Pointers
● “Pointers can feel quite intimidating when you

first see them… If you’re feeling a bit lost…
don’t panic! That’s totally normal. To get
comfortable with pointers, you’ll need to spend
a lot of time toying with code… and drawing lots
of diagrams.” – Stanford lecture notes

 11

● “The topic of pointers is no doubt the hardest
topic that we will cover/have covered for this
class. The basic concepts of pointers take a lot
of thinking to understand. This *will* be hard
stuff…” UC Berkeley lecture notes

A Pointer on Pointers

 12

● Every variable in C has
– A value and
– An address

● Including pointers
● x → x’s value
● &x → x’s address

 13

Value Address

int x = 3; 0xc0

Automatically allocated

int main(void) {

}

 14

Value Address

int x = 3; 3 0xc0

int y = 4; 0xc4

Automatically allocated

int main(void) {

}

 15

Value Address

int x = 3; 3 0xc0

int y = 4; 4 0xc4

int *p = &x; 0xc8

Automatically allocated

int main(void) {

}

 16

Value Address

int x = 3; 3 0xc0

int y = 4; 4 0xc4

int *p = &x; 0xc0 0xc8

int *q = &y; 0xcc

Automatically allocated

int main(void) {

}

 17

Value Address

int x = 3; 3 0xc0

int y = 4; 4 0xc4

int *p = &x; 0xc0 0xc8

int *q = &y; 0xc4 0xcc

int *r = p; 0xd0

Automatically allocated

int main(void) {

}

 18

Value Address

int x = 3; 3 0xc0

int y = 4; 4 0xc4

int *p = &x; 0xc0 0xc8

int *q = &y; 0xc4 0xcc

int *r = p; 0xc0 0xd0

int *s = q; 0xd4

Automatically allocated

int main(void) {

}

 19

Value Address

int x = 3; 3 0xc0

int y = 4; 4 0xc4

int *p = &x; 0xc0 0xc8

int *q = &y; 0xc4 0xcc

int *r = p; 0xc0 0xd0

int *s = q; 0xc4 0xd4

int a = *p; 0xd8

Automatically allocated

int main(void) {

}

 20

Value Address

int x = 3; 3 0xc0

int y = 4; 4 0xc4

int *p = &x; 0xc0 0xc8

int *q = &y; 0xc4 0xcc

int *r = p; 0xc0 0xd0

int *s = q; 0xc4 0xd4

int a = *p; 3 0xd8

int b = *s; 0xdc

Automatically allocated

int main(void) {

}

 21

Value Address

int x = 3; 3 0xc0

int y = 4; 4 0xc4

int *p = &x; 0xc0 0xc8

int *q = &y; 0xc4 0xcc

int *r = p; 0xc0 0xd0

int *s = q; 0xc4 0xd4

int a = *p; 3 0xd8

int b = *s; 4 0xdc

Automatically allocated

int main(void) {

}

 22

Arrays in C
● T x[y]; // declare an array of type T

// named x of length y
● int x[10]; // array of 10 ints
● x[i]; // the ith index
● int x[3] = {1, 2, 3}; // initialize

 23

Arrays in C
int a[3]; // &a == 0x10

a[0] = 0xff;

a[2] = 0xcc;

a[3] = 0xbad; // !?

a[-1] = 0xbad; // !?

 24

Arrays in C → Pointers
int a[3]; // &a == 0x10

int *b = a;

b[0] = 0xff;

b[2] = 0xcc;

b[3] = 0xbad; // !?

b[-1] = 0xbad; // !?

 25

Pointer arithmetic
int a[3]; // &a == 0x10

int *b = &a[1];

b[-1]= 0xff;

b[1] = 0xcc;

b[2] = 0xbad; // !?

b[-2] = 0xbad; // !?

 26

Pointer arithmetic
int a[3]; // &a == 0x10

int *b = a;

b[0] = 0xff; // *(b + 0)

b[2] = 0xcc; // *(b + 2)

 27

Pointer arithmetic
int a[3]; // &a == 0x10

int *b = a;

*(b + 0) = 0xff; // b[0]

*(b + 2) = 0xcc; // b[2]

 28

Pointer arithmetic
int a[3]; // &a == 0x10

int *b = a;

*(0 + b) = 0xff; // b[0]

*(2 + b) = 0xcc; // b[2]

 29

Pointer arithmetic
int a[3]; // &a == 0x10

int *b = a;

0[b] = 0xff; // b[0]

2[b] = 0xcc; // b[2]

 30

Resulting type
Operation

Type
&x ++x *x

int x;

int *x;

int **x;

 31

Resulting type
Operation

Type
&x ++x *x

int x; int * int Error

int *x; int ** int * int

int **x; int *** int ** int *

 32

#include <stdio.h>

#include <string.h>

int main() {

 char str[] = "Hello";

 size_t len = strlen(str);

 printf("String: %s\n", str);

 printf("Length: %zu\n", len);

 printf("Values: %d %d %d %d %d %d\n",

 str[0], str[1], str[2], str[3], str[4], str[5]);

 return 0;

}

 33

// version 1: array notation

int string_length_v1(char str[]) {

 int len = 0;

 while (str[len]) { // same as checking != '\0' or != 0

 len++;

 }

 return len;

}

 34

// version 2: pointers with quasi-array notation

int string_length_v2(char *str) {

 int len = 0;

 while (*(str + len)) { // same as checking != '\0' or != 0

 len++;

 }

 return len;

}

 35

// version 3: pointers with pointer arithmetic

int string_length_v3(char *str) {

 int len = 0;

 while (*str) { // same as checking != '\0' or != 0

 str++; // pointer arithmetic

 len++;

 }

 return len;

}

 36

// version 4: pointers with no counter

int string_length_v4(char *str) {

 char *p = str;

 while (*p) { // same as checking != '\0' or != 0

 p++;

 }

 return p - str; // pointer subtraction!

}

 37

Function context, local variables

Persistent data structures

Global variables

String literals

Program code (instructions)

A
dd

re
ss

es

"Top" of
stack

(lowest
address)

 38

Free the Mallocs!

 39

heisenbug: n.
A bug that disappears or alters its behavior when one attempts to probe or
isolate it. (This usage is not even particularly fanciful; the use of a debugger
sometimes alters a program's operating environment significantly enough that
buggy code, such as that which relies on the values of uninitialized memory,
behaves quite differently.) Antonym of Bohr bug; see also mandelbug,
schroedinbug. In C, nine out of ten heisenbugs result from uninitialized auto
variables, fandango on core phenomena (esp. lossage related to corruption of
the malloc arena) or errors that smash the stack.

http://catb.org/jargon/html/B/Bohr-bug.html
http://catb.org/jargon/html/M/mandelbug.html
http://catb.org/jargon/html/S/schroedinbug.html
http://catb.org/jargon/html/F/fandango-on-core.html
http://catb.org/jargon/html/A/arena.html
http://catb.org/jargon/html/S/smash-the-stack.html

