

Java references
class Blob {...}

Blob bl = new Blob();
Blob b2 = new Blob();

Java references
class Blob {...}

Blob bl = new Blob();
Blob b2 = b1;

Pointer example

int *p; [/ &p == 0Ox0;
int x = 6; // & == Oxf8;
inty = 3; // &y == 0x4;

Pointer example

int *p; [/ &p == 0Ox0;
int x = 6; // & == Oxf8;
inty = 3; // &y == 0x4;
P = &X;

Pointer example

int *p; [/ &p == 0Ox0;
int x = 6; // & == Oxf8;
inty = 3; // &y == 0x4;
p = &X;

y =1+ *p;

Pointer example

int *p; [/ &p == 0Ox0;
int x = 6; // & == Oxf8;
inty = 3; // &y == 0x4;
p = &X;

y =1+ *p;

*p = 100;

Another pointer example

voild swap(int* p1l, int* p2) {
int temp = *pil;

*pl = *p2;
*p2 = temp;
}
vold main() {
int x = 5;
int y = 3;

/] x is 5, y is 3
swap(&x, &y);
/] x is 3, y is 5

A Pointer on Pointers

« “ .. there are two things traditionally taught in
universities as a part of a computer science
curriculum which many people just never really
fully comprehend: pointers and recursion.”

— Joel Spolsky (founder, Stack Overflow)

A Pointer on Pointers

e “Pointers can feel quite intimidating when you
first see them... If you're feeling a bit lost...
don’t panic! That’s totally normal. To get
comfortable with pointers, you’ll need to spend
a lot of time toying with code... and drawing lots
of diagrams.” — Stanford lecture notes

10

A Pointer on Pointers

* “The topic of pointers is no doubt the hardest
topic that we will cover/have covered for this
class. The basic concepts of pointers take a lot
of thinking to understand. This *will* be hard
stuff...” UC Berkeley lecture notes

11

Every variable in C has
- Avalue and
- An address

Including pointers
X — X's value
&X - X's address

12

int main(void) {

Value

Address

int x = 3;

OxcO

}

Automatically allocated

13

int main(void) {

Value Address
int x = 3; 3 OxcO
int y = 4; Oxc4

}
Automatically allocated

14

int main(void) {

Value Address
int x = 3; 3 OxcO
int y = 4; 4 Oxc4
int *p = &x; Oxc8

}
Automatically allocated

15

int main(void) {

Value Address
int x = 3; 3 OxcO
int y = 4; 4 Oxc4
int *p = &x; OxcO Oxc8
int *q = &y; Oxcc

}
Automatically allocated

16

int main(void) {

Value Address
int x = 3; 3 OxcO
int y = 4; 4 Oxc4
int *p = &x; OxcO Oxc8
int *q = &y; Oxc4 Oxcc
int *r = p; Oxdo

}
Automatically allocated

17

int main(void) {

Value Address
int x = 3; 3 OxcO
int y = 4; 4 Oxc4
int *p = &x; OxcO Oxc8
int *q = &y; Oxc4 Oxcc
int *r = p; 0xcO 0xdo
int *s = q; Oxd4

}
Automatically allocated

18

int main(void) {

Value Address
int x = 3; 3 OxcO
inty = 4; 4 Oxc4
int *p = &x; OxcO Oxc8
int *q = &y; Oxc4 Oxcc
int *r = p; 0xco 0xdo
int *s = q; Oxc4 Oxd4
int a = *p; Oxd8

}
Automatically allocated

19

int main(void) {

Value Address
int x = 3; 3 OxcO
inty = 4; 4 Oxc4
int *p = &x; OxcO Oxc8
int *q = &y; Oxc4 Oxcc
int *r = p; 0xco 0xdo
int *s = q; Oxc4 Oxd4
int a = *p; 3 Oxd8
int b = *s; Oxdc

}
Automatically allocated

int main(void) {

Value Address
int x = 3; 3 OxcO
inty = 4; 4 Oxc4
int *p = &x; OxcO Oxc8
int *q = &y; Oxc4 Oxcc
int *r = p; 0xco 0xdo
int *s = q; Oxc4 Oxd4
int a = *p; 3 Oxd8
int b = *s; 4 Oxdc

}
Automatically allocated

Arrays in C
T x[y]; // declare an array of type T
// named x of length vy
int x[10]; // array of 10 ints
x[1]; // the ith index
int x[3] = {1, 2, 3}; // initialize

22

Arrays in C
int a[3]; // & == 0x10

a[0] = Oxff;

al[2] = Oxcc;

al[3] = Oxbad; // !?
a

(-1] = Oxbad; // !?

Arrays iIn C - Pointers

int a[3]; // & == 0x10

int *b = a;

D

D
D
D

0
2.
3.
-1] = Oxbad; // !?

= Oxff;
= 0Oxcc;
= Oxbad; // !?

24

Pointer arithmetic

int a[3]; // & == 0x10
int *b = &a[1];

b[-1]= Oxff;
[1
[2
b[-2] = Oxbad; // !?

= 0Oxcc;
= Oxbad; // !?

25

Pointer arithmetic

int a[3]; // & == 0x10
int *b

b

b[

0
2.

= a;
Ooxff; // *(b + 0)
Oxcc; // *(b + 2)

26

Pointer arithmetic
int a[3]; // & == 0x10

int *b = a;
*(b + 0) = oxff; // b[0O]
*(b + 2) = Oxcc; // b[2]

27

Pointer arithmetic
int a[3]; // & == 0x10

int *b = a;
*(0 + b) = Oxff; // b[0O]
*(2 + b) = Oxcc; // b[2]

28

Pointer arithmetic
int a[3]; // & == 0x10

int *b = a;
O[b] = Oxff; // b[O]
2[b] = Oxcc; // b[2]

Resulting type

Type

Operation

&X

++X

int x;

int *x;

int **x;

30

Resulting type

Operation|&x ++X *X
Type
int x; int * int Error
int *x; int ** int * int
int **x; int *** int ** int *

31

#include <stdio.h>
#include <string.h>

int main() {

char str[] = "Hello";
size t len = strlen(str);

printf("String: %s\n", str);
printf("Length: %zu\n", len);
printf("Values: %d %d %d %d %d %d\n",
str[0], str[1], str[2], str[3], str[4], str[5]);

return 0;

32

// version 1: array notation
int string_length_vi(char str[]) {

int len = 0;

while (str[len]) { // same as checking != '\0@' or != 0
len++;

}

return len;

33

/] version 2: pointers with quasi-array notation
int string_length_v2(char *str) {

int len = 0;

while (*(str + len)) { // same as checking != '\0' or != 0
len++;

}

return len;

34

// version 3: pointers with pointer arithmetic
int string_length_v3(char *str) {
int len = 0;
while (*str) { // same as checking != '\0' or !=0
str++; // pointer arithmetic
len++;

}

return len;

35

[/ version 4: pointers with no counter
int string_length_v4(char *str) {
char *p = str;
while (*p) { // same as checking != '"\0@' or != 0
pt++;
}

return p - str; // pointer subtraction!

36

2N-1 1

"Top" of = Stack|| Function context, local variables
stack v

(lowest T
address)

Heap Persistent data structures

Statics | Global variables

Addresses

Literals | String literals

Text Program code (instructions)

37

Free the Mallocs!

38

heisenbug: n.

A bug that disappears or alters its behavior when one attempts to probe or
Isolate it. (This usage is not even particularly fanciful; the use of a debugger
sometimes alters a program's operating environment significantly enough that
buggy code, such as that which relies on the values of uninitialized memory,
behaves quite differently.) Antonym of Bohr bug; see also mandelbug,
schroedinbug. In C, nine out of ten heisenbugs result from uninitialized auto
variables, fandango on core phenomena (esp. lossage related to corruption of
the malloc arena) or errors that smash the stack.

39

http://catb.org/jargon/html/B/Bohr-bug.html
http://catb.org/jargon/html/M/mandelbug.html
http://catb.org/jargon/html/S/schroedinbug.html
http://catb.org/jargon/html/F/fandango-on-core.html
http://catb.org/jargon/html/A/arena.html
http://catb.org/jargon/html/S/smash-the-stack.html

