
CSCI 2330 GDB Reference Sheet

Start and Layout
 gdb myprog	 	 Launch myprog in gdb (from shell)
 layout src	 	 Show source code while debugging
 layout asm	 	 Show assembly code while debugging

Run and Stop
 help [h] Get information about gdb
 quit [q] 	 	 Exit gdb
 run [r] Run program
 run 1 2 3 Run with command-line arguments 1 2 3
 run < in.txt Run with input redirected from in.txt
 kill [k] Stop program
 Control-D Exit gdb
 Control-C Stop the currently running gdb command
 make Run make to rebuild without leaving gdb

Breakpoints
 break [b]	 	 Set breakpoint at current location
 break sum	 	 Set breakpoint at entry to function sum
 break 20	 	 Set breakpoint at line 20 in current file
 break prog.c:20 Set breakpoint at line 20 in prog.c
 break *0x80483c3 Set breakpoint at address 0x80483c3
 delete [d] Delete all breakpoints
 delete 1 Delete breakpoint #1 (from “info break”)
 disable 1 Disable breakpoint #1
 enable 1 Enable breakpoint #1
 clear sum Clear breakpoints at entry to function sum

Execute
 step	[s]	 	 Execute one C line
 next	[n]	 	 Execute one C line
	 	 	 	 (treats functions as one line)
 stepi [si] Execute one ASM instruction
 stepi 4 Execute four ASM instructions
 nexti [ni] Execute one ASM instruction
	 	 	 	 (treats function as one instruction)
 continue [c] Execute until next breakpoint
 until 3 Execute until breakpoint #3
 finish Execute until current function returns
 call sum(1, 2) Call sum(1, 2) and print return value

Context
 backtrace [bt]	 Print current address & stack backtrace
 info [i]	 	 Print info about program state (see below)
 info program Print current status of the program
 info break Print status of breakpoints
 info frame Print info about current stack frame
 info register Print registers and their contents

Examine Code
 disas Disassemble current function
 disas sum Disassemble function sum
 disas 0x80483b7 Disassemble function around 0x80483b7
 disas 0x80483b7 0x80483c7 Disassemble within address range
 print /x $rip Print program counter in hex
 print /d $rip Print program counter in decimal
 print /t $rip Print program counter in binary

Examine Data
 print [p] Print expression (last value by default)
 print foo Print value of foo
 print /x foo+5 Print value of (foo+5) in hex
 print /d 0xAB Print 0xAB in decimal
 print /d $rax Print contents of register %rax in decimal
 print /x $rax Print contents of register %rax in hex

 x/FMT ADDRESS 	 Examine memory at ADDRESS using format FMT
 x/g 0xbffff890 Examine 8-byte word at address 0xbffff890
 x/g $rsp Examine 8-byte word at address $rsp
 x/w $rsp Examine 4-byte word at address $rsp
 x/wd $rsp Examine 4-byte word at address $rsp
	 	 	 	 in decimal
 x/2w $rsp Examine two 4-byte words at address $rsp
 x/2wd $rsp Examine two 4-byte words at address $rsp
	 	 	 	 in decimal
 x/s 0xbffff890 Examine string stored at 0xbffff890
 x/6bc $rsp	 	 Examine six bytes at address $rsp as chars
 x/10i sum Examine first 10 instructions of func sum
 x/20b sum Examine first 20 opcode bytes of func sum

 display /FMT EXPR Print expression EXPR using format FMT
	 	 	 	 each time execution stops
 display 	 	 Show current auto-display expressions
 undisplay NUM	 Remove expression NUM from auto-display

Formats: x/[NUM][SIZE][FORMAT]
 If not given, uses sensible default or last-used format
 NUM = number of objects to display
 SIZE = size of each object
 b = 1 byte
 h = 2 bytes ("half word")
 w = 4 bytes ("word")
 g = 8 bytes ("giant/quad word")
 FORMAT = format for displaying each object
 d = decimal
 x = hexadecimal
 t = binary
 a = address (pointer)
 c = character
 s = string

