CSCI 2330 – Cache Design Exercises

Suppose you have a program that uses **100 bytes of memory** (addresses 0 to 99), and makes the memory accesses specified below, in this order (assume that each access is for a single byte only):

- a. **READ 27**
- b. WRITE 64
- c. **READ 83**
- d. **WRITE 92**
- e. WRITE 45
- f. READ 41
- g. **READ 55**
- h. WRITE 43

Consider a hypothetical cache that **can only hold a single block at a time, initialized to block 0**. For each of the following possible configurations of this 1-block cache, determine whether each memory access in the list above would be a cache **HIT** or a cache **MISS**. Also determine how many **memory trips** are needed by each access. Provide the total number of hits, misses, and memory trips for each configuration.

A good approach is to trace through each configuration one access at a time, keeping track of which block is currently held in the cache and whether the block is clean or dirty.

- 1. 50-byte blocks, write-through, no-write-allocate
- 2. 25-byte blocks, write-through, no-write-allocate
- **3. 50-byte blocks, write-back, write-allocate** (assume that write-misses load into the cache first and then modify the cached block only)
- **4. 25-byte blocks, write-back, write-allocate** (assume that write-misses load into the cache first and then modify the cached block only)