
CSCI 2330 – (More) x86-64 Assembly Exercises
1. Translate the x86-64 instructions below into a C function, which you can assume is 
non-void and takes one argument.  Remember to specify the appropriate types of the 
argument and return value. Do not use any goto statements in your function.

compute: 

	 movq 	 $0, %rax 

	 movq		 $1, %rbx 

	 jmp	 	 .L2 

.L1:	addq		 $1, %rax 

	 salq		 $1, %rbx	 	 # left shift 

.L2:	cmpq		 %rdi, %rbx 

	 jl	 	 .L1	 	 	 # jump if less 

	 ret 

2. Translate the x86-64 instructions below into a C function, which again is a non-void 
function with one argument.  As before, do not use any goto statements.  This function 
uses data in memory; the specific addresses used are not significant (and can't be 
determined here anyways), but what each location is used for does matter.  Keep track 
of which locations are used.  Hint: the argument is a pointer type!

sum10: 

	 pushq	 %rbp		 	 	 # disregard for now 

	 movq		 %rsp, %rbp	 	 # disregard 

	 movq		 %rdi, -0x18(%rbp)	 # copy %rdi to some address 

	 movl   	 $0x0,-0x4(%rbp) 

	 movl   	 $0x0,-0x8(%rbp) 

	 jmp    	 .L2 

.L1:	movq    	 -0x18(%rbp),%rax 

	 movl    	 (%rax),%eax	 	 # pay close attention here! 

	 addl    	 %eax,-0x4(%rbp) 

	 addq   	 $0x4,-0x18(%rbp) 

	 addl   	 $0x1,-0x8(%rbp) 

.L2:	cmpl   	 $0x9,-0x8(%rbp) 

	 jle    	 .L1	 	 	 	 # jump if less or equal to 

	 movl    	 -0x4(%rbp),%eax 

	 popq    	 %rbp		 	 	 # disregard 

	 ret


