
CSCI 2330 – x86-64 Assembly Exercises

1. Assuming func1 and func2 are non-void functions that each take two long
arguments and return a long, rewrite the following x86-64 instructions as a series of
three function calls in C. Assume that the size of a long is 8 bytes. You may define
variables to save and reuse the return values of these function calls if you wish (but
you should still only write three lines of code, each containing one function call).
	 movq		 $5, %rsi

	 movq		 $8, %rdi

	 callq	 func1

	 movq		 %rax, %rsi

	 callq	 func2

	 movq		 %rax, %rdi

	 callq	 func1

2. Consider the x86-64 instructions below for a function named check. Rewrite this
code as a C function, which you can assume takes two int arguments and returns an
int. You can use any variable names desired in your C function.

check:

	 subl		 $4, %edi	 	

	 cmpl		 %edi, %esi

	 setl		 %al

	 movzbl	 %al, %eax

	 ret

3. Assume that x is a 4-byte int that starts in the register %ebx, compute is a function that
takes and returns an int, and verify is a function that takes a char. Translate the following
snippet of C code into equivalent x86-64 assembly instructions. You may assume that the
value of x is still in %ebx after compute returns. Hint: Remember to use appropriately-sized
registers. The 1-byte virtual register of %rdi is called %dil.

	 int result = compute(x);

	 verify(x > result);

