
CSCI 2330 – x86-64 Procedures Exercises

1. Consider the following functions and the functions they call (f4 and f5 and any lines other
than function calls not shown):

 main() { f1() { f2() { f3() {

 f1(); f3(); f4(); f5();

 f2(); } } }

 }
-

Suppose the program is executing and is inside f4. Draw
a picture of the current stack as a series of stack frames,
labeled with their function names. If the stack frame
includes a return address, mark the return address in the
frame. An example frame is shown to the right.

2. Consider the following two functions foo and bar. Suppose the program is executing
and is paused at the point indicated in the bar function. Draw a picture of the stack
showing the stack frames of foo and bar. Label each frame along with the components
of each frame, each specified as a variable name or return address along with its size in
bytes. Assume that an int is 4 bytes and that all variables other than those that must be
stored in memory are stored only in registers.

 // 8 args, all of type int except a1
 void foo() { void bar(int* a1, int a2, ..., int a8) {

 int x = ...; int z = ...;

 int y = ...; int* p = &z;

 bar(&x, 2, 3, ..., 8); ... // program paused here

 } }

3. Write a snippet of x86-64 assembly that implements the following C function. Don't
use push or pop instructions; instead, work with %rsp directly. Assume that an int is 4
bytes and that foo is some function that takes two int* arguments and returns an int.
The leaq instruction will be useful here.

 int cfun() {

 int x = 3;

 int y = 7;

 int z = foo(&x, &y); // note: could modify x or y

 return x + z;

 }

 foo return addr
} foo

frame

