
CSCI 2330 – Buffer Overflow Exercises

Consider the following two function snippets of a program that contains a buffer
overflow vulnerability:

 void foo() { void bar(char* buf1) {
 char buf1[20]; char buf2[30];
 bar(buf1); gets(buf2);

 } }

Assume that the only local variables used in foo and bar are buf1 and
buf2, respectively, and further assume that the compiler does not add
any padding in the stack frames. Also assume that foo is called directly
from the main function (i.e., the call chain is main, then foo, then bar).

1. Following the model on the right, draw a picture showing the
components of the stack just prior to executing callq gets. The
stack frame of main is already indicated for you. Clearly label the
following components in memory: stack frames (including function
names), local variables (including variable names), and return
addresses. Don't worry about accurately drawing the relative size of
each component or the amount of unused stack space at the top or
bottom of the picture.

2. Suppose an attacker exploits this program using a code injection
attack and injects an exploit string containing 15 bytes of assembly
instructions (in addition to anything else required for the exploit to
work). In the same style, draw a second picture depicting the stack
just after returning from gets (i.e., still within the bar function).
Clearly label same pieces as before. Additionally, draw an arrow
indicating where the overwritten return address points, and indicate the
location of the exploit code and the exploit padding.

3. How many bytes does the entire exploit string from Q2 require?

4. Suppose an attacker exploits this program using a return-oriented programming
(ROP) attack instead of a code injection attack. Assume that this attack requires three
gadgets. Draw a third picture of the stack, showing the same components as in Q2 as
well as clearly labeling the gadget addresses.

5. How many bytes does the ROP exploit string from Q4 require?

...

