
CSCI 2330 – (More) x86-64 Assembly & GDB Exercises

1. Rewrite the x86-64 instructions below as a C function, which you can assume is non-
void and takes one argument. Remember to specify the appropriate types of the
argument and return value. You can use any local variables you wish. Do not use any
goto statements in your function.

compute:

	 movq 	 $0, %rax

	 movq		 $1, %rbx

	 jmp	 	 .L2

.L1:	addq		 $1, %rax

	 salq		 $1, %rbx	 	 # left shift

.L2:	cmpq		 %rdi, %rbx

	 jl	 	 .L1	 	 	 # jump if less

	 ret

2. What GDB command (just one) should you use for each of the following situations when
debugging an assembly program (without the source code)?
 (a) You are paused on callq foo, and you want to execute the entire function and then

pause after returning.
 (b) You are paused on callq foo, and you want to step into the function and then pause

execution again.
 (c) You accidentally stepped into a call to malloc and want to return to the calling function

(i.e., back into your own code).
 (d) You want to know what calling foo(20) would return (but the program isn't about to make

that call).
 (e) You are at a breakpoint within a loop and want to run the next loop iteration (you can

assume there is only the one breakpoint set).

3. Write a single GDB "x" command ("examine memory") to do each of the following (you must
use the x command, not print):
 (a) Print a 4-byte int stored in memory at address %rax, in decimal.
 (b) Print an 8-byte int stored in memory at address %rax, in hex.
 (c) Print a string stored in memory at address %rax.
 (d) Print a string stored in memory at address 0x123456.
 (e) Print an array of 5 chars starting at address %rax, showing their decimal values.
 (f) Print an array of 5 chars starting at address %rax, showing their textual values.
 (g) Print an array of 5 pointers starting at address %rax.

