CSCI 2330 - Bitwise Operator Exercises

1. Compute 0×68 I 0×55 and write your answer in hex.
2. Compute $0 \times 68 \& 0 \times 55$ and write your answer in hex.
3. Compute 0x68 ^ 0x55 and write your answer in hex.
4. Compute 0x68 II 0x55 and write your answer in hex.
5. Assuming 8 -bit numbers, compute $\sim!25$ and write your answer in hex.
6. Assuming 8-bit numbers, compute (a) $\mathbf{5} \ll \mathbf{1}$, (b) $\mathbf{5} \ll 2$, and (c) $\mathbf{5} \ll \mathbf{3}$ and write your answers in decimal. What is notable about these values?
7. C does not provide a logical XOR operator (which you might reasonably expect to be ${ }^{\wedge \wedge}$). How could you compute the logical XOR of two ints \mathbf{x} and \mathbf{y} using existing logical operators ($==,!=, I I, \& \&$, and !)? Hint: The logical NOT operator (!) is a useful way to transform any numeric value into only the values 0 (false) or 1 (true).
