
CSCI 2330 – x86-64 Procedures Exercises

1. Consider the following two functions foo and bar. Assume that a program executes
the foo function and is paused at the point indicated in the bar function. Draw a picture
of the stack showing the stack frames of foo and bar and labeling each component
within the frames. Assume there are no caller-saved registers or any other pieces of
data not implied by the code snippets shown. How many bytes are in each frame?

 // 8 args, all of type int except a1
 void foo() { void bar(int* a1, int a2, ..., int a8) {

 int x = ...; int y = ...;

 bar(&x, 2, 3, ..., 8); int* p = &y;

 } ... // program paused here

 }

2. Write a snippet of x86-64 assembly that implements the following C function.
Assume that an int is 4 bytes and that foo is some function that takes two int*
arguments and returns an int. Remember that x and y must be stored in memory (not in
registers)! The leaq instruction will be useful here.

 int cfun() {

 int x = 3;

 int y = 7;

 int z = foo(&x, &y);

 return x + z;

 }

3. Consider the C function compute given below, and assume that the compiler uses
registers to store local variables x and y. Assuming the compiler makes the most
sensible choices, what kind of register (caller-saved or callee-saved) will be chosen for
each variable? Then, given your choices, which registers (just x, just y, both, or
neither) will need to be saved by the compute function itself? Do not make any
assumptions about which registers are used by do_work.

 void compute() {

 int x = 5;

 int y = do_work(x);

 do_work(y);

 do_work(y);

 do_work(y);

 }

