CSCI 2330 — x86-64 Assembly Exercises

1. For each of the following x86-64 instructions, rewrite as a C-style command using
assignment (=), pointer dereferencing (*), and regular arithmetic operators (+, —, etc).
You can use register names as subexpressions — e.g., "movq %trax, %rcx” could be
rewritten as "rex = rax". Assume no data size scaling for C pointer arithmetic.

addg
movq
subgq
leaq
leaq
addg

$rax,
$rax,
(%$rax),
(%$rax),
9 (%rax,

9 (%$rax,

$rcx

(%$rcx)

srex
srex
$rdx) ,
%rdx) ,

$rbx
$rbx

2. Assuming func1 and func2 are non-void functions that each take two arguments,
rewrite the following x86-64 instructions as a series of C-style function calls. You can
define and use any variables you wish.

movq
movq
callqg
movq
callqg
movq

callg

$5,
$8,

$rsi

$rdi

funcl

grax,

$rsi

func2

$rax,

Frdi

funcl

3. Rewrite the x86-64 instructions below as a C function, which you can assume is
non-void and takes one argument. Remember to specify the appropriate types of the
argument and return value. You can use any local variables you wish. Do not use
any goto statements in your function.

compute:

.Ll:

.L2:

movq
movq
Jjmp
addgq
salq
cmpq
jl

ret

$0,
$1,
.L2
$1,
$1,
$rdi,
L1

$rax

$rbx

$rax
$rbx
$rbx

left shift

jump if less

