
CSCI 2330 – Fork Exercises

Consider the following snippet of code using fork:

1. Including the initial process that starts executing the program, how
many processes are created when this program is run?

2. Draw a picture of the hierarchical process tree that is created by
running this program (assuming that all processes have been created and
are still running). Remember that fork returns 0 in the child and the
(nonzero) child PID in the parent. Your tree should have the number of
nodes you determined in Question 1.

3. What are two different possible outputs of running this program? (you
should be able to determine this without actually executing the program!)

Note: there are more than two possibilities!

CSCI 2310: Operating Systems Homework 1 Solutions Fall 2015

Question 7. (25 pts) Consider the following piece of code:

1 int c = 5;
2 pid_t pid = fork();
3 if (pid == 0) {
4 c += 5;
5 } else {
6 pid = fork();
7 c += 10;
8 if (pid) {
9 c += 10;
10 }
11 }
12 fork();
13 printf("%d\n", c);

a. (10 pts) Assuming all calls to fork are successful, how many processes are created by running this program?
What is a possible output of running the program (i.e., what are the values that are printed by the processes)?
Note: you should be able to answer this question without running the program on a computer!

b. (10 pts) Describe the hierarchical process tree that is created from running this program, assuming that all
processes have been created but not yet exited. You may (but are not required to) draw a picture of the process
tree to illustrate.

c. (5 pts) What would the process tree be if you inserted an exec system call in between lines 2 and 3 that
executes the pwd program?

a. The initial process calls fork (line 2), resulting in two processes. The same initial process calls fork again (line
6), resulting in three total processes (the initial process and two children). Now, each of those three processes
calls fork (line 12), resulting in six total processes. Remember that each process has its own memory contents
(variables, etc) and so each process has its own copy of c.

The initial process sets c to 5, then increases c to 15 on line 7, then increases c again to 25 on line 9.

The first child of the initial process (created on line 2 with initial c = 5) just increases c to 10 on line 4.

The second child of the initial process (created on line 6 with initial c = 5) increases c to 15 on line 7.

Thus, the three values of c upon reaching the final fork (line 12) are 25, 10, and 15. Each of these three
processes then calls the final fork, resulting in a duplicate process of each (with the same value of c as the
original). Thus, the final values of c for the six processes are 25, 25, 10, 10, 15, 15. These values might be
printed out in any order depending on how the CPU scheduler chooses to execute the processes.

b. The initial process (the root of the tree) creates three child processes, via the forks on line 2, line 6, and line
12. The first of these child processes (created on line 2) itself creates a child via the fork on line 12. The
second of these child processes (created on line 6) itself creates a child on fork 12. The third of these child
processes (created on line 12) does not create any further child processes.

Thus, the resulting process tree will be a single root node with three children, and two of those three child
nodes will themselves have a single child node (this is a six-node tree with three levels).

c. The initial process would create a child, and then both processes would overwrite themselves with the pwd
program and create no further processes. Thus, the process tree would simply be an initial process node with
a single child process (two processes total).

3

