
Sean Barker

Typical Data Sizes

1

Data Type Bytes

char 1

short 2

int 4

long 8

float 4

double 8

Sean Barker

Encoding Bytes

2

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

Sean Barker

C Puzzle: Logical XOR

•C does not provide a logical XOR operator
(which you might reasonably expect to be ^^).
How could you compute the logical XOR of two
ints a and b using existing logical operators?

3

Sean Barker

Binary Arithmetic

4

Sean Barker

Unsigned Numbers

5

Unsigned Integers

• Suppose we had one byte

• Can represent 2
8
 (256) values

• If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128

(10000000)

64 192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256.

Sean Barker

Signed Magnitude

6

Signed Magnitude

• One bit (usually left-most) signals:
• 0 for positive
• 1 for negative

For one byte:
 1 = 00000001, -1 = 10000001

Pros: Negation is very simple!

0

-1

-127

A

1

Signed Magnitude

• One bit (usually left-most) signals:
• 0 for positive
• 1 for negative

For one byte:
 1 = 00000001, -1 = 10000001

Pros: Negation is very simple!

0

-1

-127

A

1

Signed Magnitude

• One bit (usually left-most) signals:
• 0 for positive
• 1 for negative

For one byte:
 1 = 00000001, -1 = 10000001

Pros: Negation is very simple!

0

-1

-127

A

1

Sean Barker

Two’s Complement

7

Two’s Complement

• Borrow nice property from number line:

0
-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

0

-127

-1

B

1

127

-128

Two’s Complement

• Only one value for zero
• With N bits, can represent the range:

• -2N-1 to 2N-1 – 1
• First bit still designates positive (0) /negative (1)

• Negating a value is slightly more complicated:
 1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers
are stored using two’s complement! This is the standard!

Two’s Complement

• Only one value for zero
• With N bits, can represent the range:

• -2N-1 to 2N-1 – 1
• First bit still designates positive (0) /negative (1)

• Negating a value is slightly more complicated:
 1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers
are stored using two’s complement! This is the standard!

