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ATM Program
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// get funds in account
int total = get_account_total();

// get amount to withdraw
int withdraw = get_withdraw_amount();

// check for sufficient funds
if (total >= withdraw) {

// withdraw funds from account
update_account_total(total - withdraw);
dispense_money(withdraw);

}
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Too Much Milk
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Time You Your Roommate

3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery store
3:15 Arrive home
3:20 Arrive at grocery store Look in fridge, no milk
3:25 Buy milk Leave for grocery store
3:30 

3 
Arrive home, put milk in fridge

3:35 Arrive at grocery store
3:40 Buy milk 

3:45 Arrive home – too much milk!

if (noMilk) {
buy milk;

}

if (noMilk) {
buy milk;

}
You Your 

Roommate
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Too Much Milk: Solution 1?
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if (noMilk & noNote) {     if (noMilk & noNote) {
    leave note;                   leave note;
    buy milk;                     buy milk;
    remove note;              remove note;
}                          } 
                

Thread A Thread B
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Too Much Milk: Solution 2?
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Thread A Thread B

leave note A;
if (noNote B) {

if (noMilk) {
buy milk;

}
}
remove note A;

leave note B;
if (noNote A) {

if (noMilk) {
buy milk;

}
}
remove note B;
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Too Much Milk: Solution 3?
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Thread A Thread B

leave note A;
while (note B) {

do nothing;
}
if (noMilk) {

buy milk;
}
remove note A; 

leave note B;
if (noNote A) {

if (noMilk) {
buy milk;

}
}
remove note B; 
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Critical Sections
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     ...
arriveHome();

if (noMilk) {
buy milk;

}

makeCoffee();
     ...

Critical 
Section

Property of mutual exclusion
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Mutex Locks
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Too Much Milk with Locks
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Thread A Thread B

lock.acquire();
if (noMilk) {

buy milk;
}
lock.release(); 

lock.acquire();
if (noMilk) {

buy milk;
}
lock.release(); 
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Implementing Locks: Interrupts (version 1)
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class Lock {
  public:
    void acquire();
    void release();
}  

Lock::acquire() {  
  disable interrupts;
}

Lock::release() {
  enable interrupts;
}
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Implementing Locks: Interrupts (version 2)
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class Lock {
  public:
    void acquire();
    void release();
  private:
    int value = FREE;
    Queue Q = empty;
}  

Lock::acquire() {  
  disable interrupts;
  if (value == FREE) {
     value = BUSY;
  } else {
     add curThread to Q;
     put curThread to sleep;
  }
  enable interrupts;
}

Lock::release() {
  disable interrupts;
  if queue not empty { 
     take thread T off Q;
     put T on ready queue;
  } else {
     value = FREE;
  }
  enable interrupts;
}

Sean Barker

Interrupt Disable/Enable Pattern
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2

Interrupt disable/enable pattern

Time

Thread A
.
.

Disable interrupt
Sleep

Sleep return
Enable interrupts

.

.

Thread B

Sleep return
Enable interrupts

.

.
Disable interrupts
Sleep

switch

switch

Atomic read-modify-write

n On a multiprocessor, interrupt disable does not provide 
atomicity 
n other CPUs could still enter the critical section
n disabling interrupts on all CPUs would be expensive

n Solution: HW provides some special instructions
n test&set (most arch) --- read value, write 1 back to memory
n exchange (x86) --- swaps value between register and memory
n compare&swap (68000) --- read value; if value matches register, do 

exchange
n load linked and conditional store (MIPS R4000, Alpha)

n read value in one instruction, do some operations, when store occurs, check if 
value has been modified in the meantime. If not, ok; otherwise, abort, and jump 
back to start.

Locks using test&set (1)

n Flawed but simple:

lock value = 0;

Lock::Acquire()   { while (test&set(value) == 1);  }

Lock::Release()   { value = 0;}

n Problems:
n busy-waiting --- thread consumes CPU while it is waiting

n also known as “Spin” lock
n could cause problems if threads have different priorities

Locks using test&set (2)

Key idea: only busy-wait to atomically check lock value --- if 
lock is busy, give up CPU. Use a guard on the lock itself.

Lock::Acquire()   { 
while (test&set(guard))  // short wait time

;

if (value == BUSY) {
Put on queue of threads waiting for lock;
Go to sleep and set guard to 0

} else {
value = BUSY;
guard = 0;

}
}

Lock::Release()   { 
while (test&set(guard))

;
if  anyone on wait queue {

Take a waiting thread off wait 
queue and put it at the front 
of the ready queue;

} else {
value = FREE;

}
guard = 0;

}

Test-and-Set on Multiprocessors

n Each processor repeatedly executes a test_and_set
n In hardware, it is implemented as:

n Fetch the old value
n Write a “1” blindly

n Write in a cached system results in invalidations to other 
caches

n Simple algorithm results in a lot of bus traffic
n Wrap an extra test (test-and-test-and-set)

lock:  if (!location)
if (!test-and-set(location))

return;
goto lock;

Ticket Lock for Multiprocessors

n Hardware support: fetch-and-increment
n Obtain a ticket number and wait for your turn

n Ensures fairness
n Still could result in a lot of bus transactions
n Can be used to build concurrent queues

Lock:
next_ticket = fetch_and_increment(next_ticket)
while (next_ticket != now_serving);

Unlock: 
now_serving++;
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Implementing Locks: Atomic Spinlock
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class Lock {
  public:
    void acquire();
    void release();
  private:
    int value = FREE;
}  

Lock::acquire() {  
  while (test&set(value) == BUSY) {

// do nothing
}

}

Lock::release() {
  value = FREE;
}

Sean Barker

Lock::acquire() {  
  while (test&set(guard) == 1) {

// do nothing
}
if (value == FREE) {

value = BUSY;
guard = 0;

} else {
put curThread on Q;
guard = 0 & put curThread to sleep;

}
}

Minimizing Busy-Waiting
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class Lock {
  public:
    void acquire();
    void release();
  private:
    int value = FREE;
    int guard = 0;
    Queue Q = empty;
}  

Lock::release() {
  while (test&set(guard) == 1) {

// do nothing
}
if Q is not empty {

take T off Q;
put T on ready queue;

} else {
value = FREE;

}
guard = 0;

}
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Producer/Consumer
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class ProducerConsumer {
   
private Queue<Item> queue;
private Lock lock;

   
public void add(Item item) {
lock.acquire();
queue.add(item);
lock.release();

}

public Item remove() {
lock.acquire();
Item item = queue.remove();
lock.release();
return item;

}

}

What if empty?

What if full?

Sean Barker

Condition Variables
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public void add(Item item) {
lock.acquire();

queue.add(item);
cv.signal(lock);

lock.release();
}

public Item remove() {
lock.acquire();

while (queue.isEmpty()) {
// release lock & sleep
cv.wait(lock);

}
Item item = queue.remove();

lock.release();
return item;

}

private Queue<Item> queue;
private Lock lock;
private ConditionVariable cv;

Mesa 
semantics
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Condition Variables (2)
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public void add(Item item) {
lock.acquire();

while (queue.isFull()) {
cv2.wait(lock);

}
queue.add(item);
cv1.signal(lock);

lock.release();
}

public Item remove() {
lock.acquire();

while (queue.isEmpty()) {
cv1.wait(lock);

}
Item item = queue.remove();
cv2.signal(lock);

lock.release();
return item;

}

private Queue<Item> queue;
private Lock lock;
private ConditionVariable cv1, cv2;

Sean Barker

ConditionVariable::wait(Lock cvLock) {  
  Qlock.acquire();
  put curThread on Q;
  Qlock.release();
  cvLock.release() & put curThread to sleep;
  cvLock.acquire();
}

Implementing Condition Variables
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class ConditionVariable {
  public:
    void wait(Lock cvLock);
    void signal();
  private:
    Queue Q = empty;
    Lock Qlock = FREE;
}  

ConditionVariable::signal() {
  Qlock.acquire();

if Q is not empty {
take T off Q;
put T on ready queue;

}
Qlock.release();

}
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Monitors
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Producer/Consumer (redux)
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class ProducerConsumer {
   
private Queue<Item> queue;
private Lock lock;

   
public void add(Item item) {
lock.acquire();
queue.add(item);
lock.release();

}

public Item remove() {
lock.acquire();
Item item = queue.remove();
lock.release();
return item;

}

}
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Producer/Consumer with Java Monitors
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class ProducerConsumer {
   
private Queue<Item> queue;

   
public synchronized void add(Item item) {
queue.add(item);

}

public synchronized Item remove() {
return queue.remove();

}

}
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Java Condition Variables
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class ProducerConsumer {
   
private Queue<Item> queue;

   
public synchronized void add(Item item) {
queue.add(item);
this.notify(); // signal

}

public synchronized Item remove() {
while (queue.isEmpty()) {
this.wait(); // release lock and sleep

}
return queue.remove();

}

}
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Too Few Chairs
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Threads A, B, C, ...

if (chairs > 0) {
chairs--;
doSomeWork();
chairs++;

}

Sean Barker

Too Few Chairs with Condition Variables

24

Threads A, B, C, ...

lock.acquire();
if (chairs == 0) {

cv.wait(lock);
}
chairs--;
lock.release();
doSomeWork();
lock.acquire();
chairs++;
cv.signal(lock);
lock.release();
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Semaphores
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Sean Barker

Counting Semaphore
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Threads A, B, C, ...

sem.wait();
doSomeWork();
sem.signal();

sem = new Semaphore(NUM_CHAIRS); 
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Binary Semaphore
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sem.wait();
if (noMilk) {

buy milk;
}
sem.signal(); 

sem = new Semaphore(1); 

Threads A, B, C, ...

Sean Barker

Semaphore for Ordering
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attend_os_class();
write_notes();

Thread A

read_notes();
do_os_project();

Thread B

sem = new Semaphore(0);

sem.signal();

sem.wait();
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Condition Variables (redux)
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public void add(Item item) {
lock.acquire();

while (queue.isFull()) {
cv2.wait(lock);

}
queue.add(item);
cv1.signal(lock);

lock.release();
}

public Item remove() {
lock.acquire();

while (queue.isEmpty()) {
cv1.wait(lock);

}
Item item = queue.remove();
cv2.signal(lock);

lock.release();
return item;

}

private Queue<Item> queue;
private Lock lock;
private ConditionVariable cv1, cv2;
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Producer/Consumer with Semaphores
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private Queue<Item> queue(N); // capacity N
private Semaphore mutex = 1;  // binary (lock)
private Semaphore empty = N;  // # free slots
private Semaphore full = 0;   // # occupied slots

public void add(Item item) {

// one fewer slot, or wait 
empty.wait();

mutex.wait();
queue.add(item);
mutex.signal();

// one more used slot
full.signal();

}

public Item remove() {

// wait until nonempty
full.wait();

mutex.wait();
Item item = queue.remove();
mutex.signal();

// one more free slot
empty.signal();

return item;
}
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Implementing Semaphores
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Semaphore::signal() {
   value++;
   if (value <= 0) {
      take T off Q;
      put T on ready queue;

 }
}

(+ atomicity via interrupts or Test&Set)

class Semaphore {
  public:
    Semaphore(int N); // starting value
    void wait();
    void signal();
  private:
    int value = N;
    Queue Q = empty;
}

Semaphore::wait() {
   value--;
   if (value < 0) {
      put curThread on Q;
      put curThread to sleep;
   }  
}

Sean Barker

Readers/Writers Problem
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Readers/Writers with Semaphores
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class ReadWrite {

public:

void read();

void write();

private:

}

ReadWrite::write() {

wrt.wait();

<perform write>

wrt.signal();

}

ReadWrite::read() {

mutex.wait();

readers++;

if (readers == 1)

wrt.wait();

mutex.signal();

<perform read>

mutex.wait();

readers--;

if (readers == 0)

wrt.signal();

mutex.signal();

}

Semaphore wrt = 1;

Semaphore mutex = 1;

int readers = 0;

  private int numReaders = 0;

  private int numWriters = 0;

  private synchronized void prepareRead() {

    while (numWriters > 0) wait();

    numReaders++;

  }

  private synchronized void doneRead() {

    numReaders--;

    if (numReaders == 0) notify();

  }

  public void read() { 

    // reads NOT synchronized

    prepareRead();

    <perform read>

    doneRead();

  }

private void prepareWrite() {

    numWriters++;

    while (numReaders > 0) wait();

}

private void doneWrite() {

    numWriters--;

    notify();

}

public synchronized void write() {

    // writes synchronized

    prepareWrite();

    <perform write>

    doneWrite();

}

Sean Barker

Readers/Writers with Monitors
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The Dining Philosophers
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Sean Barker

Dining Philosophers with Locks
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Lock chopsticks[5];
   
void philosopher(int i) {
while (true) {

think();

chopsticks[i].acquire(); // left chopstick
chopsticks[(i+1)%5].acquire(); // right chopstick

eat();

chopsticks[i].release();
chopsticks[(i+1)%5].release();

}
}

Possible 
Deadlock!
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Dining Philosophers with Monitors

void synchronized putdown(int i) { 
state[i] = THINK;
// test left and right neighbors
tryEat((i+4)%5);
tryEat((i+1)%5);

}

void philosopher(int i) {
state[i] = THINK;
while (true) {
think();
pickup(i); // pickup both
eat();
putdown(i);

}
}

37

void tryEat(int n) { 
// check left and right of n
if (state[n] == HUNGRY &&

state[(n+4)%5] != EAT &&
state[(n+1)%5] != EAT) { 

state[n] = EAT;
self[n].signal();

  }
}

monitor DiningPhilosophers  {
enum {EAT, THINK, HUNGRY}

state[5];
condition self[5];

}

void synchronized pickup(int i) { 
state[i] = HUNGRY;
tryEat(i);
if (state[i] != EAT)

self[i].wait();
}
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Deadlock
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Thread A:

lock1.acquire();
lock2.acquire();

// do something

lock1.release();
lock2.release();

Thread B:

lock2.acquire();
lock1.acquire();

// do something

lock1.release();
lock2.release();

Thread group waiting on events from same group

1. Resources have mutual exclusion 

2. Threads hold and wait 

3. No preemption of resources 

4. Circular wait
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Resource Allocation Graph
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t4 is requesting r3
r3 is assigned to t2

Sean Barker

Multiple Copies of Resources
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Deadlock! No deadlock!
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Allocation Example
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maximum current could request

t1 4 3 1

t2 8 4 4

t3 12 4 8

Safe state!

3 threads, 12 interchangeable resources (11 used)

Sean Barker

Allocation Example
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maximum current could request

t1 4 3 1

t2 8 4 4

t3 12 5 7

Unsafe state!

t3 requests last resource (now all 12 used)
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Deadlock Avoidance with RAG
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r3 is assigned to t2
t4 is requesting r3

t3 might request r2


