Synchronization
Thread Thread
A ‘ l B

Shared
Data

1

BOWdOiIl Sean Barker 1

ATM Program

// get funds in account
int total = get_account_total();

// get amount to withdraw
int withdraw = get_withdraw_amount();

// check for sufficient funds
if (total >= withdraw) {

// withdraw funds from account
update_account_total(total - withdraw);
dispense_money(withdraw);

BOWdOiIl Sean Barker 2
__

Too Much Milk

if (noMilk) { if (noMilk) { Y
You buy milk; buy milk; our
Roommate
} }
Time You Your Roommate

3:00 |Arrive home
3:05 |Look in fridge, no milk

3:10 |Leave for grocery store

3:15 Arrive home
3:20 |Arrive at grocery store Look in fridge, no milk
3:25 |Buy milk Leave for grocery store
3:30 |Arrive home, put milk in fridge
3:35 Arrive at grocery store
3:40 Buy milk
3:45 Arrive home — too much milk!
Bowdoin Sean Barker 3

Too Much Milk: Solution 1?

Thread A Thread B
1f (noMilk & noNote) { 1f (noMilk & noNote) {
leave note; leave note;
buy milk; buy milk;
remove note; remove note;
} }
BOWdOiIl Sean Barker 4

Too Much Milk: Solution 2?

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (nhoNote A) {
if (noMilk) { if (noMilk) {
buy milk; buy milk;
} }
} }
remove note A; remove note B;
Bowdoin Sean Barker 5
Too Much Milk: Solution 3?
Thread A Thread B

leave note A;

while (note B) { leave note B;

if (noNote A) {

, do nothing; if (noMilk) {

if (noMilk) { B e
buy milk; }

by

remove note B;
remove note A;

BOWdOiIl Sean Barker 6
__

Critical Sections

arriveHome();

Critical i (melii i)
Section oy lle
}

Property of mutual exclusion

makeCoffee();

BOWdOiIl Sean Barker 7

O\
i

BOWdOiIl Sean Barker 8

Too Much Milk with Locks

Thread A Thread B
lock.acquire(Q); lock.acquire();
if (noMilk) { if (nhoMilk) {
buy milk; buy milk;
} }
lock.release(); lock.release();
Bowdoin Sean Barker 9

Implementing Locks: Interrupts (version 1)

class Lock {
public:
void acquire();
void release();

¥
Lock: :acquire() { Lock: :release() {
disable interrupts; enable interrupts;
} ¥
Bowdoin Sean Barker 10

Implementing Locks: Interrupts (version 2)

class Lock {
public:
void acquire();
void release();
private:
int value = FREE;
Queue Q = empty;

Lock: :acquire() {
disable interrupts;
if (value == FREE) {
value = BUSY;
} else {
add curThread to Q;
put curThread to sleep;

Lock: :release() {
disable interrupts;
if queue not empty {
take thread T off Q;
put T on ready queue;
} else {
value = FREE;

ky }
enable interrupts; enable interrupts;
ks }
Bowdoin Sean Barker 11
Interrupt Disable/Enable Pattern
Thread A Thread B
Time :
Disable interrupt
Sleep
m» Sleep return
Enable interrupts
v Disable interrupts

Sleep

y

Sleep return
Enable interrupts

Bowdoin Sean Barker 12

Implementing Locks: Atomic Spinlock

class Lock {
public:
void acquire();
void release();
private:
int value = FREE;

Lock: :acquire() {

while (test&set(value) == BUSY) { value = FREE;
// do nothing }
}

}

Lock: :release() {

Bowdoin Sean Barker

Minimizing Busy-Waiting

class Lock {
public:
void acquire();
void release();

private:
int value = FREE;
’int guard = 0;‘
Queue Q = empty;
}
Lock: :acquire() { Lock::release() {
while (test&set(guard) == 1) { while (test&set(guard) == 1) {
// do nothing // do nothing
3 b
if (value == FREE) { if Q is not empty {
value = BUSY; take T off Q;
guard = 0, put T on ready queue;
} else { } else {
put curThread on Q; value = FREE;
’guard = @ & put curThread to sleep; }
} guard = 0;
} }

Bowdoin Sean Barker

Producer/Consumer

class ProducerConsumer {

private Queue<Item> queue;
private Lock lock;

public void add(Item item) {
lock.acquire();

queue.add(item); « What if full?

lock.release();

}

public Item remove() {
lock.acquire();
Item item = queue.remove(); « What if empty’?
lock.release();
return item;

BOWdOiIl Sean Barker 15

Condition Variables

private Queue<Item> queue;
private Lock lock;
’private ConditionVariable cv;

public void add(Item item) { public Item remove() {
lock.acquire(); lock.acquire();

queue.add(item); (queue.isEmpty()) {
’cv.signal(lock); <i;7 // release lock & sleep
cv.wait(lock);

lock.release(); Mesa }
} semantics Item item = queue.remove();

lock.release();
return item;

BOWdOiIl Sean Barker 16

Condition Variables (2)

private Queue<Item> queue;
private Lock lock;

private ConditionVariable

public void add(Item item) { public Item remove() {
lock.acquire(); lock.acquire();
while (queue.isFull()) { while (queue.isEmpty()) {
cv2.wait(lock); cvl.wait(lock);
} }
queue.add(item); Item item = queue.remove();
cvl.signal(lock); cv2.signal(lock);
lock.release(); lock.release();
} return item;
}
BOWdOiIl Sean Barker

17

Implementing Condition Variables

class ConditionVariable {
public:
void wait(Lock cvlLock);
void signalQ);
private:
Queue Q = empty;
Lock Qlock = FREE;

}
ConditionVariable: :wait(Lock cvLock) { ConditionVariable::signal() {
Qlock.acquire(); Qlock.acquire(Q);
put curThread on Q; if Q is not empty {
Qlock.release(); take T off Q;
]chock.release() & put curThread to sleep;\ put T on ready queue;
cvLock.acquire(Q);
} Qlock.release();

}

Bowdoin Sean Barker 18

Monitors

entry queue

shared data

B e

operations

initialization
code

Bowdoin Sean Barker 19

Producer/Consumer (redux)

class ProducerConsumer {

private Queue<Item> queue;
private Lock lock;

public void add(Item item) {
lock.acquire();
queue.add(item);
lock.release();

}

public Item remove() {
lock.acquire();
Item item = queue.remove();
lock.release();
return item;

Bowdoin Sean Barker 20

Producer/Consumer with Java Monitors

class ProducerConsumer {

private Queue<Item> queue;

public’synchronized‘void add(Item item) {
queue.add(item);

}

public’synchronized‘ltem remove() {
return queue.remove();

}

Bowdoin Sean Barker 21

Java Condition Variables

class ProducerConsumer {
private Queue<Item> queue;
public synchronized void add(Item item) {

queue.add(item);
’this.notify();

// signal

public synchronized Item remove() {
while (queue.isEmpty()) {
’this.wait();‘// release lock and sleep
}
return queue.remove();

}

Bowdoin Sean Barker 22

Too Few Chairs

Threads A, B, C, ...

if (chairs > 0) {
chairs--;
doSomeWork();
chairs++;

Bowdoin Sean Barker 23

Too Few Chairs with Condition Variables

Threads A, B, C, ...

lock.acquire();
if (chairs == 0) {
cv.wait(lock);
hy
chairs--;
lock.release();
doSomeWork();
lock.acquire();
chairs++;
cv.signal(lock);
lock.release();

Bowdoin Sean Barker 24

Semaphores

BOWdOiIl Sean Barker 25

Counting Semaphore

sem = new Semaphore(NUM_CHAIRS);

Threads A, B, C, ...

sem.wait();
doSomeWork();
sem.signal();

BOWdOiIl Sean Barker 26

Binary Semaphore

sem = new Semaphore(l);

Threads A, B, C, ...

sem.wait();
if (noMilk) {

buy milk;
}

sem.signal();

Bowdoin Sean Barker 27

Semaphore for Ordering

sem = new Semaphore(@);

Thread A Thread B
sem.wait();
attend_os_class(); read_notes();
write_notes(); do_os_project();

sem.signal();

Bowdoin Sean Barker 28

Condition Variables (redux)

private Queue<Item> queue;
private Lock lock;

private ConditionVariable

public void add(Item item) { public Item remove() {
lock.acquire(); lock.acquire();
while (queue.isFull()) { while (queue.isEmpty()) {

cv2.wait(lock); cvl.wait(lock);

} }
queue.add(item); Item item = queue.remove();
cvl.signal(lock); cv2.signal(lock);
lock.release(); lock.release();

} return item;

}
BOWdOiIl Sean Barker 29

Producer/Consumer with Semaphores

private Queue<Item> queue(N); // capacity N
private Semaphore mutex = 1; // binary (lock)
private Semaphore empty = N; // # free slots

private Semaphore full = 0; // # occupied slots
public void add(Item item) { public Item remove() {
// one fewer slot, or wait // wait until nonempty
empty.wait(); full.wait();
mutex.wait(); mutex.wait();
queue.add(item); Item item = queue.remove();
mutex.signal(); mutex.signal();
// one more used slot // one more free slot
full.signal(); empty.signal();
}
return item;
}
Bowdoin Sean Barker 30

Implementing Semaphores

class Semaphore {

public:
Semaphore(int N); // starting value
void wait(Q);
void signal(Q);

private:
int value = N;
Queue Q = empty;

ks
Semaphore: :wait() { Semaphore::signal() {
value--; value++;
if (value < @) { if (value <= @) {
put curThread on Q; take T off Q;
put curThread to sleep; put T on ready queue;
} }
} ks

(+ atomicity via interrupts or Test&Set)

Bowdoin Sean Barker 31

Readers/Writers Problem

Bowdoin Sean Barker 32

Readers/Writers with Semaphores

class ReadWrite {

ReadWrite::read() {

public: .
mutex.wait();
void read();
O readers++;
void write();
07 if (readers == 1)
private: .
wrt.wait();
Semaphore wrt = 1; -
mutex.signal();
Semaphore mutex = 1;
<perform read>
int readers = 0;)
mutex.wait();
' readers--;
ReadWrite::write() { if (readers == 0)
wrt.wait(); wrt.signal();
<perform write> mutex.signal();
wrt.signal(); }
}
Bowdoin Sean Barker 5

private int numReaders =

private int numWriters = 0;

private void prepareRead() {

while (numWriters > 0) wait();

numReaders++;

privatevoid doneRead () {
numReaders--;

if (numReaders 0) notify();

public void read() {
// reads NOT synchronized
prepareRead();
<perform read>

doneRead();

private void prepareWrite() {
numWriters++;

while (numReaders > 0) wait();

private void doneWrite() {
numWriters—--;

notify();

pubi | REREORIEEE] void write() {

// writes synchronized
prepareWrite();
<perform write>

doneWrite();

Bowdoin

Sean Barker

34

The Dining Philosophers

Bowdoin Sean Barker 35

Dining Philosophers with Locks

Lock chopsticks[5];

void philosopher(int i) {
while (true) {

think();

chopsticks[i].acquire(); // left chopstick
chopsticks[(i+1)%5].acquire(); // right chopstick

eat();

chopsticks[i].release();
chopsticks[(i+1l)%5].release();

Bowdoin Sean Barker 36

Dining Philosophers with Monitors

monitor DiningPhilosophers { void philosopher(int i) {

enum {EAT, THINK, HUNGRY} state[i] = THINK;
state[5]; while (true) {
condition self[5]; think();
} pickup(i); // pickup both
eat();

void synchronized pickup(int i) { putdown(1i);
state[i] = HUNGRY; }
tryEat(i); }
if (state[i] != EAT)

self[i].wait(); void tryEat(int n) {

} // check left and right of n
if (state[n] == HUNGRY &&
void synchronized putdown(int i) { state[(n+4)%5] != EAT &&
state[i] = THINK; state[(n+1)%5] != EAT) {
// test left and right neighbors state[n] = EAT;
tryEat((i+4)%5); self[n].signal();
tryEat ((i+1)%5); }
}
}
Bowdoin Sean Barker 37
Deadlock
Thread A: Thread B:
lockl.acquire(); lock2.acquire();
lock2.acquire(); lockl.acquire();
// do something // do something
lockl.release(); lockl.release();
lock2.release(); lock2.release();

Thread group waiting on events from same group

Resources have mutual exclusion
Threads hold and wait

No preemption of resources

B bh =

Circular wait

Bowdoin Sean Barker 38

Resource Allocation Graph

RARRE)
() NN

lt2|" | [t4)
\ ./ \t3/ N

\ ’/-
o t4 is requesting r3
r3 is assigned to t2 r3 r4

\
/

BOWdOiIl Sean Barker 39

Multiple Copies of Resources

. 4 9 J\ . 2, |

/ D) R \/\\ s /"‘ ~

‘ w t2) t3/' w\t /:w \tl/A \\t2) x 3) ll\t/
B SE L
Deadlock! No deadlock!

BOWdOiIl Sean Barker 40

Allocation Example

3 threads, 12 interchangeable resources (11 used)

maximum current could request
t, 4 3 1
t 8 4 4
t; 12 4 8

A

{ Safe state! }

Bowdoin

Sean Barker

Allocation Example

t; requests last resource (now all 12 used)

maximum current could request
t, 4 3 1
t, 8 4 4
t; 12 5 7
{U nsafe state!}

Bowdoin

Sean Barker

Deadlock Avoidance with RAG

t3 might request r2

\ \
‘i |)) [t4)
__/ _/ Y\/
' t4 is requesting r3
r3 is assigned to t2 r3 r4

Bowdoin Sean Barker 23

