
Sean Barker

Synchronization

1

Shared
Data

Thread
A

Thread
B

Thread
C

Sean Barker

ATM Program

2

// get funds in account
int total = get_account_total();

// get amount to withdraw
int withdraw = get_withdraw_amount();

// check for sufficient funds
if (total >= withdraw) {

// withdraw funds from account
update_account_total(total - withdraw);
dispense_money(withdraw);

}

Sean Barker

Too Much Milk

3

Time You Your Roommate

3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery store
3:15 Arrive home
3:20 Arrive at grocery store Look in fridge, no milk
3:25 Buy milk Leave for grocery store
3:30

3
Arrive home, put milk in fridge

3:35 Arrive at grocery store
3:40 Buy milk

3:45 Arrive home – too much milk!

if (noMilk) {
buy milk;

}

if (noMilk) {
buy milk;

}
You Your

Roommate

Sean Barker

Too Much Milk: Solution 1?

4

if (noMilk & noNote) { if (noMilk & noNote) {
 leave note; leave note;
 buy milk; buy milk;
 remove note; remove note;
} }

Thread A Thread B

Sean Barker

Too Much Milk: Solution 2?

5

Thread A Thread B

leave note A;
if (noNote B) {

if (noMilk) {
buy milk;

}
}
remove note A;

leave note B;
if (noNote A) {

if (noMilk) {
buy milk;

}
}
remove note B;

Sean Barker

Too Much Milk: Solution 3?

6

Thread A Thread B

leave note A;
while (note B) {

do nothing;
}
if (noMilk) {

buy milk;
}
remove note A;

leave note B;
if (noNote A) {

if (noMilk) {
buy milk;

}
}
remove note B;

Sean Barker

Critical Sections

7

 ...
arriveHome();

if (noMilk) {
buy milk;

}

makeCoffee();
 ...

Critical
Section

Property of mutual exclusion

Sean Barker

Mutex Locks

8

Sean Barker

Too Much Milk with Locks

9

Thread A Thread B

lock.acquire();
if (noMilk) {

buy milk;
}
lock.release();

lock.acquire();
if (noMilk) {

buy milk;
}
lock.release();

Sean Barker

Implementing Locks: Interrupts (version 1)

10

class Lock {
 public:
 void acquire();
 void release();
}

Lock::acquire() {
 disable interrupts;
}

Lock::release() {
 enable interrupts;
}

Sean Barker

Implementing Locks: Interrupts (version 2)

11

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE;
 Queue Q = empty;
}

Lock::acquire() {
 disable interrupts;
 if (value == FREE) {
 value = BUSY;
 } else {
 add curThread to Q;
 put curThread to sleep;
 }
 enable interrupts;
}

Lock::release() {
 disable interrupts;
 if queue not empty {
 take thread T off Q;
 put T on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;
}

Sean Barker

Interrupt Disable/Enable Pattern

12

2

Interrupt disable/enable pattern

Time

Thread A
.
.

Disable interrupt
Sleep

Sleep return
Enable interrupts

.

.

Thread B

Sleep return
Enable interrupts

.

.
Disable interrupts
Sleep

switch

switch

Atomic read-modify-write

n On a multiprocessor, interrupt disable does not provide
atomicity
n other CPUs could still enter the critical section
n disabling interrupts on all CPUs would be expensive

n Solution: HW provides some special instructions
n test&set (most arch) --- read value, write 1 back to memory
n exchange (x86) --- swaps value between register and memory
n compare&swap (68000) --- read value; if value matches register, do

exchange
n load linked and conditional store (MIPS R4000, Alpha)

n read value in one instruction, do some operations, when store occurs, check if
value has been modified in the meantime. If not, ok; otherwise, abort, and jump
back to start.

Locks using test&set (1)

n Flawed but simple:

lock value = 0;

Lock::Acquire() { while (test&set(value) == 1); }

Lock::Release() { value = 0;}

n Problems:
n busy-waiting --- thread consumes CPU while it is waiting

n also known as “Spin” lock
n could cause problems if threads have different priorities

Locks using test&set (2)

Key idea: only busy-wait to atomically check lock value --- if
lock is busy, give up CPU. Use a guard on the lock itself.

Lock::Acquire() {
while (test&set(guard)) // short wait time

;

if (value == BUSY) {
Put on queue of threads waiting for lock;
Go to sleep and set guard to 0

} else {
value = BUSY;
guard = 0;

}
}

Lock::Release() {
while (test&set(guard))

;
if anyone on wait queue {

Take a waiting thread off wait
queue and put it at the front
of the ready queue;

} else {
value = FREE;

}
guard = 0;

}

Test-and-Set on Multiprocessors

n Each processor repeatedly executes a test_and_set
n In hardware, it is implemented as:

n Fetch the old value
n Write a “1” blindly

n Write in a cached system results in invalidations to other
caches

n Simple algorithm results in a lot of bus traffic
n Wrap an extra test (test-and-test-and-set)

lock: if (!location)
if (!test-and-set(location))

return;
goto lock;

Ticket Lock for Multiprocessors

n Hardware support: fetch-and-increment
n Obtain a ticket number and wait for your turn

n Ensures fairness
n Still could result in a lot of bus transactions
n Can be used to build concurrent queues

Lock:
next_ticket = fetch_and_increment(next_ticket)
while (next_ticket != now_serving);

Unlock:
now_serving++;

Sean Barker

Implementing Locks: Atomic Spinlock

13

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE;
}

Lock::acquire() {
 while (test&set(value) == BUSY) {

// do nothing
}

}

Lock::release() {
 value = FREE;
}

Sean Barker

Lock::acquire() {
 while (test&set(guard) == 1) {

// do nothing
}
if (value == FREE) {

value = BUSY;
guard = 0;

} else {
put curThread on Q;
guard = 0 & put curThread to sleep;

}
}

Minimizing Busy-Waiting

14

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE;
 int guard = 0;
 Queue Q = empty;
}

Lock::release() {
 while (test&set(guard) == 1) {

// do nothing
}
if Q is not empty {

take T off Q;
put T on ready queue;

} else {
value = FREE;

}
guard = 0;

}

Sean Barker

Producer/Consumer

15

class ProducerConsumer {

private Queue<Item> queue;
private Lock lock;

public void add(Item item) {
lock.acquire();
queue.add(item);
lock.release();

}

public Item remove() {
lock.acquire();
Item item = queue.remove();
lock.release();
return item;

}

}

What if empty?

What if full?

Sean Barker

Condition Variables

16

public void add(Item item) {
lock.acquire();

queue.add(item);
cv.signal(lock);

lock.release();
}

public Item remove() {
lock.acquire();

while (queue.isEmpty()) {
// release lock & sleep
cv.wait(lock);

}
Item item = queue.remove();

lock.release();
return item;

}

private Queue<Item> queue;
private Lock lock;
private ConditionVariable cv;

Mesa
semantics

Sean Barker

Condition Variables (2)

17

public void add(Item item) {
lock.acquire();

while (queue.isFull()) {
cv2.wait(lock);

}
queue.add(item);
cv1.signal(lock);

lock.release();
}

public Item remove() {
lock.acquire();

while (queue.isEmpty()) {
cv1.wait(lock);

}
Item item = queue.remove();
cv2.signal(lock);

lock.release();
return item;

}

private Queue<Item> queue;
private Lock lock;
private ConditionVariable cv1, cv2;

Sean Barker

ConditionVariable::wait(Lock cvLock) {
 Qlock.acquire();
 put curThread on Q;
 Qlock.release();
 cvLock.release() & put curThread to sleep;
 cvLock.acquire();
}

Implementing Condition Variables

18

class ConditionVariable {
 public:
 void wait(Lock cvLock);
 void signal();
 private:
 Queue Q = empty;
 Lock Qlock = FREE;
}

ConditionVariable::signal() {
 Qlock.acquire();

if Q is not empty {
take T off Q;
put T on ready queue;

}
Qlock.release();

}

Sean Barker

Monitors

19

Sean Barker

Producer/Consumer (redux)

20

class ProducerConsumer {

private Queue<Item> queue;
private Lock lock;

public void add(Item item) {
lock.acquire();
queue.add(item);
lock.release();

}

public Item remove() {
lock.acquire();
Item item = queue.remove();
lock.release();
return item;

}

}

Sean Barker

Producer/Consumer with Java Monitors

21

class ProducerConsumer {

private Queue<Item> queue;

public synchronized void add(Item item) {
queue.add(item);

}

public synchronized Item remove() {
return queue.remove();

}

}

Sean Barker

Java Condition Variables

22

class ProducerConsumer {

private Queue<Item> queue;

public synchronized void add(Item item) {
queue.add(item);
this.notify(); // signal

}

public synchronized Item remove() {
while (queue.isEmpty()) {
this.wait(); // release lock and sleep

}
return queue.remove();

}

}

Sean Barker

Too Few Chairs

23

Threads A, B, C, ...

if (chairs > 0) {
chairs--;
doSomeWork();
chairs++;

}

Sean Barker

Too Few Chairs with Condition Variables

24

Threads A, B, C, ...

lock.acquire();
if (chairs == 0) {

cv.wait(lock);
}
chairs--;
lock.release();
doSomeWork();
lock.acquire();
chairs++;
cv.signal(lock);
lock.release();

Sean Barker

Semaphores

25

Sean Barker

Counting Semaphore

26

Threads A, B, C, ...

sem.wait();
doSomeWork();
sem.signal();

sem = new Semaphore(NUM_CHAIRS);

Sean Barker

Binary Semaphore

27

sem.wait();
if (noMilk) {

buy milk;
}
sem.signal();

sem = new Semaphore(1);

Threads A, B, C, ...

Sean Barker

Semaphore for Ordering

28

attend_os_class();
write_notes();

Thread A

read_notes();
do_os_project();

Thread B

sem = new Semaphore(0);

sem.signal();

sem.wait();

Sean Barker

Condition Variables (redux)

29

public void add(Item item) {
lock.acquire();

while (queue.isFull()) {
cv2.wait(lock);

}
queue.add(item);
cv1.signal(lock);

lock.release();
}

public Item remove() {
lock.acquire();

while (queue.isEmpty()) {
cv1.wait(lock);

}
Item item = queue.remove();
cv2.signal(lock);

lock.release();
return item;

}

private Queue<Item> queue;
private Lock lock;
private ConditionVariable cv1, cv2;

Sean Barker

Producer/Consumer with Semaphores

30

private Queue<Item> queue(N); // capacity N
private Semaphore mutex = 1; // binary (lock)
private Semaphore empty = N; // # free slots
private Semaphore full = 0; // # occupied slots

public void add(Item item) {

// one fewer slot, or wait
empty.wait();

mutex.wait();
queue.add(item);
mutex.signal();

// one more used slot
full.signal();

}

public Item remove() {

// wait until nonempty
full.wait();

mutex.wait();
Item item = queue.remove();
mutex.signal();

// one more free slot
empty.signal();

return item;
}

Sean Barker

Implementing Semaphores

31

Semaphore::signal() {
 value++;
 if (value <= 0) {
 take T off Q;
 put T on ready queue;

 }
}

(+ atomicity via interrupts or Test&Set)

class Semaphore {
 public:
 Semaphore(int N); // starting value
 void wait();
 void signal();
 private:
 int value = N;
 Queue Q = empty;
}

Semaphore::wait() {
 value--;
 if (value < 0) {
 put curThread on Q;
 put curThread to sleep;
 }
}

Sean Barker

Readers/Writers Problem

32

Sean Barker

Readers/Writers with Semaphores

33

class ReadWrite {

public:

void read();

void write();

private:

}

ReadWrite::write() {

wrt.wait();

<perform write>

wrt.signal();

}

ReadWrite::read() {

mutex.wait();

readers++;

if (readers == 1)

wrt.wait();

mutex.signal();

<perform read>

mutex.wait();

readers--;

if (readers == 0)

wrt.signal();

mutex.signal();

}

Semaphore wrt = 1;

Semaphore mutex = 1;

int readers = 0;

 private int numReaders = 0;

 private int numWriters = 0;

 private synchronized void prepareRead() {

 while (numWriters > 0) wait();

 numReaders++;

 }

 private synchronized void doneRead() {

 numReaders--;

 if (numReaders == 0) notify();

 }

 public void read() {

 // reads NOT synchronized

 prepareRead();

 <perform read>

 doneRead();

 }

private void prepareWrite() {

 numWriters++;

 while (numReaders > 0) wait();

}

private void doneWrite() {

 numWriters--;

 notify();

}

public synchronized void write() {

 // writes synchronized

 prepareWrite();

 <perform write>

 doneWrite();

}

Sean Barker

Readers/Writers with Monitors

34

Sean Barker

The Dining Philosophers

35

Sean Barker

Dining Philosophers with Locks

36

Lock chopsticks[5];

void philosopher(int i) {
while (true) {

think();

chopsticks[i].acquire(); // left chopstick
chopsticks[(i+1)%5].acquire(); // right chopstick

eat();

chopsticks[i].release();
chopsticks[(i+1)%5].release();

}
}

Possible
Deadlock!

Sean Barker

Dining Philosophers with Monitors

void synchronized putdown(int i) {
state[i] = THINK;
// test left and right neighbors
tryEat((i+4)%5);
tryEat((i+1)%5);

}

void philosopher(int i) {
state[i] = THINK;
while (true) {
think();
pickup(i); // pickup both
eat();
putdown(i);

}
}

37

void tryEat(int n) {
// check left and right of n
if (state[n] == HUNGRY &&

state[(n+4)%5] != EAT &&
state[(n+1)%5] != EAT) {

state[n] = EAT;
self[n].signal();

 }
}

monitor DiningPhilosophers {
enum {EAT, THINK, HUNGRY}

state[5];
condition self[5];

}

void synchronized pickup(int i) {
state[i] = HUNGRY;
tryEat(i);
if (state[i] != EAT)

self[i].wait();
}

Sean Barker

Deadlock

38

Thread A:

lock1.acquire();
lock2.acquire();

// do something

lock1.release();
lock2.release();

Thread B:

lock2.acquire();
lock1.acquire();

// do something

lock1.release();
lock2.release();

Thread group waiting on events from same group

1. Resources have mutual exclusion

2. Threads hold and wait

3. No preemption of resources

4. Circular wait

Sean Barker

Resource Allocation Graph

39

t4 is requesting r3
r3 is assigned to t2

Sean Barker

Multiple Copies of Resources

40

Deadlock! No deadlock!

Sean Barker

Allocation Example

41

maximum current could request

t1 4 3 1

t2 8 4 4

t3 12 4 8

Safe state!

3 threads, 12 interchangeable resources (11 used)

Sean Barker

Allocation Example

42

maximum current could request

t1 4 3 1

t2 8 4 4

t3 12 5 7

Unsafe state!

t3 requests last resource (now all 12 used)

Sean Barker

Deadlock Avoidance with RAG

43

r3 is assigned to t2
t4 is requesting r3

t3 might request r2

