CSCI 3310 - Address Translation Exercises

1. Consider a machine using paging with a total physical memory size of 256 bytes, a page size of 16 bytes, and the partially filled in page table shown below:

Page	Frame
0	2
1	6
2	11
3	9
4	5
5	0
6	4
\ldots	\ldots

(a) How many possible pages can a process have?
(b) How many bits do we need for a virtual address so a process can access all memory?
(c) How many bits of the virtual address are for \mathbf{p} (page number) and for \mathbf{d} (page offset)?
(d) Translate virtual address 24 to its physical memory address. Do this in two ways: using the computationally expensive non-binary method, and then using the efficient binary method.
(e) Translate virtual address $\mathbf{8 2}$ to its physical memory address.
2. On most machines, each address corresponds to one byte of memory -- such machines are called byte-addressable. Some special-purpose machines use a different model where each address corresponds to a complete word of memory. These machines are called word-addressable, and here, a word is the smallest addressable quantity instead of a byte. Suppose we have the same memory system described previously (256 total bytes with 16byte pages) running on a word-addressable machine with a 32-bit word size.
(a) - (d) Repeat questions (1a) through (1d) given this memory architecture. Remember that addresses are now in terms of words, not bytes. Each virtual address thus specifies a set of bytes (comprising a word) in physical memory rather than one byte. Note that this means there will be fewer virtual addresses!
(e) Translate virtual address 13 to a set of physical bytes on this machine.

