
Sean Barker

Synchronization

2

Shared
Data

Thread
A

Thread
B

Thread
C

Sean Barker

ATM Program

3

// get funds in account
int total = get_account_total();

// get amount to withdraw
int withdraw = get_withdraw_amount();

// check for sufficient funds
if (total >= withdraw) {

// withdraw funds from account
update_account_total(total - withdraw);
dispense_money(withdraw);

}

Sean Barker

Too Much Milk

4

Time You Your Roommate
3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery store
3:15 Arrive home
3:20 Arrive at grocery store Look in fridge, no milk
3:25 Buy milk Leave for grocery store
3:35 Arrive home, put milk in fridge
3:45 Buy milk
3:50 Arrive home with milk
3:50 Too much milk!

if (noMilk) {
buy milk;

}

if (noMilk) {
buy milk;

}

Sean Barker

Too Much Milk: Solution 1?

5

if (noMilk & NoNote) { 	 	 if (noMilk & NoNote) {
 leave note; 		 leave note;
 buy milk; 		 buy milk;
 remove note; 		 remove note;
} 	 	 }

Thread A Thread B

Sean Barker

Too Much Milk: Solution 2?

6

Thread A Thread B

leave note A;
if (noNote B) {

if (noMilk) {
buy milk;

}
}
remove note A;

leave note B;
if (noNote A) {

if (noMilk) {
buy milk;

}
}
remove note B;

Sean Barker

Too Much Milk: Solution 3?

7

Thread A Thread B

leave note A;
while (note B) {

do nothing;
}
if (noMilk) {

buy milk;
}
remove note A;

leave note B;
if (noNote A) {

if (noMilk) {
buy milk;

}
}
remove note B;

Sean Barker

Critical Sections

8

 ...
arriveHome();

if (noMilk) {
buy milk;

}

makeCoffee();
 ...

Critical
Section

Property of mutual exclusion

Sean Barker

Mutex Locks

9

Sean Barker

Too Much Milk with Locks

10

Thread A Thread B

lock.acquire();
if (noMilk) {

buy milk;
}
lock.release();

1
2
3
4
5

1
2
3
4
5

lock.acquire();
if (noMilk) {

buy milk;
}
lock.release();

Sean Barker

Implementing Locks: Interrupts (version 1)

11

class Lock {
 public:
 void acquire();
 void release();
}

Lock::acquire() {
 disable interrupts;
}

Lock::release() {
 enable interrupts;
}

Sean Barker

Implementing Locks: Interrupts (version 2)

12

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE;
 Queue Q = empty;
}

Lock::acquire() {
 disable interrupts;
 if (value == FREE) {
 value = BUSY;
 } else {
 add curThread to Q;
 put curThread to sleep;
 }
 enable interrupts;
}

Lock::release() {
 disable interrupts;
 if queue not empty {
 take thread T off Q;
 put T on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;
}

Sean Barker

Interrupt Disable/Enable Pattern

13

2

Interrupt disable/enable pattern

Time

Thread A
.
.

Disable interrupt
Sleep

Sleep return
Enable interrupts

.

.

Thread B

Sleep return
Enable interrupts

.

.
Disable interrupts
Sleep

switch

switch

Atomic read-modify-write

n On a multiprocessor, interrupt disable does not provide
atomicity
n other CPUs could still enter the critical section
n disabling interrupts on all CPUs would be expensive

n Solution: HW provides some special instructions
n test&set (most arch) --- read value, write 1 back to memory
n exchange (x86) --- swaps value between register and memory
n compare&swap (68000) --- read value; if value matches register, do

exchange
n load linked and conditional store (MIPS R4000, Alpha)

n read value in one instruction, do some operations, when store occurs, check if
value has been modified in the meantime. If not, ok; otherwise, abort, and jump
back to start.

Locks using test&set (1)

n Flawed but simple:

lock value = 0;

Lock::Acquire() { while (test&set(value) == 1); }

Lock::Release() { value = 0;}

n Problems:
n busy-waiting --- thread consumes CPU while it is waiting

n also known as “Spin” lock
n could cause problems if threads have different priorities

Locks using test&set (2)

Key idea: only busy-wait to atomically check lock value --- if
lock is busy, give up CPU. Use a guard on the lock itself.

Lock::Acquire() {
while (test&set(guard)) // short wait time

;

if (value == BUSY) {
Put on queue of threads waiting for lock;
Go to sleep and set guard to 0

} else {
value = BUSY;
guard = 0;

}
}

Lock::Release() {
while (test&set(guard))

;
if anyone on wait queue {

Take a waiting thread off wait
queue and put it at the front
of the ready queue;

} else {
value = FREE;

}
guard = 0;

}

Test-and-Set on Multiprocessors

n Each processor repeatedly executes a test_and_set
n In hardware, it is implemented as:

n Fetch the old value
n Write a “1” blindly

n Write in a cached system results in invalidations to other
caches

n Simple algorithm results in a lot of bus traffic
n Wrap an extra test (test-and-test-and-set)

lock: if (!location)
if (!test-and-set(location))

return;
goto lock;

Ticket Lock for Multiprocessors

n Hardware support: fetch-and-increment
n Obtain a ticket number and wait for your turn

n Ensures fairness
n Still could result in a lot of bus transactions
n Can be used to build concurrent queues

Lock:
next_ticket = fetch_and_increment(next_ticket)
while (next_ticket != now_serving);

Unlock:
now_serving++;

Sean Barker

Implementing Locks: Atomic Test&Set

14

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE; // FREE = 0

 // BUSY = 1
}

Lock::acquire() {
 while (test&set(value) == BUSY) {

// do nothing
}

}

Lock::release() {
 value = FREE;
}

Lock::acquire() {
 while (test&set(guard) == 1) {

// do nothing
}
if (value == FREE) {

value = BUSY;
guard = 0;

} else {
put curThread on Q;
guard = 0 & put curThread to sleep;

}
}

Sean Barker

Minimizing Busy-Waiting

15

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE;
 int guard = 0;
 Queue Q = empty;
}

Lock::release() {
 while (test&set(guard) == 1) {

// do nothing
}
if Q is not empty {

take T off Q;
put T on ready queue;

} else {
value = FREE;

}
guard = 0;

}

