Synchronization
Thread Thread
A g ) B

Shared
Data

1

Bowdoin Sean Barker 2

ATM Program

// get funds in account
int total = get_account_total();

// get amount to withdraw
int withdraw = get_withdraw_amount();

// check for sufficient funds
if (total >= withdraw) {

// withdraw funds from account
update_account_total(total - withdraw);
dispense_money(withdraw);

Bowdoin Sean Barker 3



Too Much Milk

if (noMilk) { if (noMilk) {
buy milk; buy milk;
} }
Time You Your Roommate

3:00 | Arrive home
3:05 |Look in fridge, no milk
3:10 | Leave for grocery store

3:15 Arrive home
3:20 | Arrive at grocery store Look in fridge, no milk
3:25 | Buy milk Leave for grocery store
3:35 | Arrive home, put milk in fridge
3:45 Buy milk
3:50 Arrive home with milk
3:50 Too much milk!
Bowdoin Sean Barker 4

Too Much Milk: Solution 1?

Thread A Thread B
if (noMilk & NoNote) { if (noMilk & NoNote) {
leave note; leave note;
buy milk; buy milk;
remove note; remove note;
} }
Bowdoin Sean Barker 5



Too Much Milk: Solution 2?

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNote A) {
1f (noMilk) { 1f (noMilk) {
buy milk; buy milk;
ks ks
} }
remove note A; remove note B;
Bowdoin Sean Barker 6
|
Too Much Milk: Solution 3?
Thread A Thread B
leave note A; leave note B;
while (note B) { if (noNote A) {
do nothing; if (noMilk) {
ks buy milk;
if (noMilk) { }
buy milk; }
} remove note B;
remove note A;
Bowdoin Sean Barker 7




Critical Sections

arriveHome();

Critical if (noMilk) {
Section buy milk;
}
makeCoffee();

Property of mutual exclusion

Bowdoin Sean Barker 8

O\
i

Bowdoin Sean Barker 9




Too Much Milk with Locks

Thread A Thread B
1 Tlock.acquire(Q); 1 lock.acquire();
2 if (noMilk) { 2 if (noMilk) {
3 buy milk; 3 buy milk;
4 3 4 ks
5 Tlock.release(); 5 lock.release();
Bowdoin Sean Barker 10

Implementing Locks: Interrupts (version 1)

class Lock {
public:
void acquire();
void release();

Lock: :acquire(Q) { Lock: :release() {
disable interrupts; enable interrupts;

¥ }

Bowdoin Sean Barker 11



Implementing Locks: Interrupts (version 2)

class Lock {
public:
void acquire();
void release();
private:
int value = FREE;
Queue Q = empty;

Lock: :acquire() { Lock: :release() {

disable interrupts; disable interrupts;

if (value == FREE) { if queue not empty {
value = BUSY; take thread T off Q;

} else { put T on ready queue;
add curThread to Q; } else {
put curThread to sleep; value = FREE;

3 }

enable interrupts; enable interrupts;

} }

Bowdoin Sean Barker 12

Interrupt Disable/Enable Pattern

Thread A Thread B
Time .
Disable interrupt
Sleep
~—-—;;;;;E""“>- Sleep return
Enable interrupts
v Disable interrupts
o S
Sleep return
Enable interrupts
BOWdOin Sean Barker e




Implementing Locks: Atomic Test&Set

class Lock {
public:
void acquire(Q);
void release();
private:

Lock::acquire() {
while (test&set(value) == BUSY) {
// do nothing
}
}

int value = FREE; // FREE

Il
S

// BUSY =

=

Lock: :release() {
value = FREE;

}

Bowdoin Sean Barker

Minimizing Busy-Waiting

class Lock {
public:
void acquire(Q);
void release();

private:
int value = FREE;
int guard = 0;
Queue Q = empty;
3
Lock::acquire() {
while (test&set(guard) == 1) {

// do nothing

Lock::release() {
while (test&set(guard) == 1) {
// do nothing

14

1 }

if (value == FREE) { if Q is not empty {
value = BUSY; take T off Q;
guard = 0; put T on ready queue;

} else { } else {
put curThread on Q; value = FREE;
guard = @ & put curThread to sleep; 3

} guard = 0;

3 3
Bowdoin Sean Barker 15




