Recap: The OS Abstraction

User-level Applications

virtual machine| interface
A 4

Operating System

physical machine | interface
v

Hardware

Bowdoin Sean Barker 1

OS Resource Management

Hardware OS Services

Processes, scheduling,

Pr r ot
0Cesso synchronization

Allocation, protection,
virtual memory

Disk management,
filesystems, networking

Bowdoin Sean Barker 2

Protection: User and Kernel Mode

Support User
Services Applications

User Mode

Kernel Mode

Device
Drivers

Operating
System

Bowdoin Sean Barker 3

System Calls

user process
user moqle
user process executing » calls system call return from system call (mode bit = 1)
\ A
LY 7
A V4
v | trap return
amne mode bit= 0 mode bit = 1
kernel mode
execute system call (mode bit = 0)
Bowdoin Sean Barker 4

Making a System Call

#include <stdio.h>
int main ()

{

.
.
.

— printf ("Greetings");

.
.

return O;

}

user

mode

standard C library
kernel
mode
write ()
write ()
system call

Bowdoin Sean Barker 5

Example System Calls

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode () ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe)
CreateFileMapping () shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()
Bowdoin Sean Barker 6

System Call Implementation

user application

open ()
user
mode
—] system call interface
kernel
mode A
TR open ()

Implementation
» of open ()
system call

return

Bowdoin Sean Barker
|

Traps

i ."Y
| Ay 7
(3RS
Memory Addresses
0: 0x00080000 Illegal address
Trap \ector 1: 0x00100000 Memory violation

2: 0x00100480 Division by Z€e1ro

System call

3: 0x00123010

Bowdoin Sean Barker
|

I/0 Control & Interrupts

0: 0x2£f080000

keyboard

Interrupt

1: 0x2ff100000

mouse

Vector

2: 0x2ff100480

timer

3: 0x2£f123010

disk 1

Bowdoin

Sean Barker

Synchronous & Asynchronous I/O

requesting process

user = i
{ waiting A A requesting process A } user
- N
device driver device driver
1 I
Jkernel < 1 interrupt handler 1 1 interrupt handler r kernell
1} v
A - 1
hardware hardware
b data transfer e = = data transfer
~ P
time =— time ——
(a) (b)
Bowdoin Sean Barker 10

Hardware Timer

Bowdoin Sean Barker 11

OS Architecture: Mac OS X

Quartz][OpenGL IPrinlCore o

Core foundation Core services non-GUI APLI...

Core OS ("Darwin")
System utilities

Kernel ("xnu")

File systems
Networking] WKE_____)

BSD

(1O Kit | Drivers)

Bowdoin Sean Barker 12

OS Architecture: Windows 8

Windows 8 Platform and Tools

Metro style Apps Desktop Apps

System Services

Internet
Bxplorer Win32

Windows Kernel Services

=

www buldwindows.com

Bowdoin Sean Barker

Monolithic Kernel Design

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

. signals terminal file system CPU scheduling
g) handling swapping block I/O page replacement
2 character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Bowdoin Sean Barker 14

Layered OS Design

User programs

Device drivers

Virtual memory

I/O channel

CPU scheduler

! Hardware

Bowdoin Sean Barker

Microkernel Design

User Processes

System

Thread External PO
System Pacine Support

N

Microkernel Communication /‘

Processor =

Low-Level VM Protection Control /]
Hardware

Bowdoin

\ .

High-Level User Mode
Processes File System Scheduling \

Kernel Mod:

15

Sean Barker

Hybrid Design in Mac OS X

application environments
and common setrvices

|

BSD
kernel
environment
Mach
Bowdoin Sean Barker 17

Modular Design

scheduling
device and classes
bus drivers

core Solaris
miscellaneous kernel
modules
STREAMS executable
modules formats

loadable
system calls

Bowdoin Sean Barker 18

