Recap: The OS Abstraction
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OS Resource Management

Hardware OS Services

Processes, scheduling,
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filesystems, networking
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Protection: User and Kernel Mode
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System Calls

user process
user moqle
user process executing » calls system call return from system call (mode bit = 1)
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Making a System Call

#include <stdio.h>
int main ()

{

.
.
.

— printf ("Greetings");

.
.

return O;

}

user

mode

standard C library
kernel
mode
write ()
write ()
system call
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Example System Calls

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode () ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe )
CreateFileMapping () shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()
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System Call Implementation

user application

open ()
user
mode
—] system call interface
kernel
mode A
TR open ()

Implementation
» of open ()
system call

return
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Traps
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Memory Addresses
0: 0x00080000 Illegal address
Trap \ector 1: 0x00100000 Memory violation

2: 0x00100480 Division by Z€e1ro

System call

3: 0x00123010
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I/0 Control & Interrupts

0: 0x2£f080000

keyboard

Interrupt

1: 0x2ff100000

mouse

Vector

2: 0x2ff100480

timer

3: 0x2£f123010

disk 1
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Synchronous & Asynchronous I/O

requesting process

user = i
{ waiting A A requesting process A } user
- N
device driver device driver
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Jkernel < 1 interrupt handler 1 1 interrupt handler r kernell
1} v
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hardware hardware
b data transfer e = = data transfer
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time =— time ——
(a) (b)
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Hardware Timer
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OS Architecture: Mac OS X

Quartz ][ OpenGL IPrinlCore o

Core foundation Core services non-GUI APLI...

Core OS ("Darwin")
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OS Architecture: Windows 8

Windows 8 Platform and Tools

Metro style Apps Desktop Apps

System Services

Internet
Bxplorer Win32

Windows Kernel Services

=

www buldwindows.com
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Monolithic Kernel Design

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

. signals terminal file system CPU scheduling
g ) handling swapping block I/O  page replacement
2 character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory
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Layered OS Design

User programs

Device drivers

Virtual memory

I/O channel

CPU scheduler

! Hardware
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Microkernel Design

User Processes

System

Thread External PO
System Pacine Support
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Microkernel Communication /‘
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Low-Level VM Protection Control /]
Hardware
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High-Level User Mode
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Hybrid Design in Mac OS X

application environments
and common setrvices

|

BSD
kernel
environment
Mach
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Modular Design

scheduling
device and classes
bus drivers

core Solaris
miscellaneous kernel
modules
STREAMS executable
modules formats

loadable
system calls
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