
Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Last Class: Mass storage, disk scheduling

• Minimizing seek time and rotational latency
• Disk head scheduling

– FCFS, SSTF, SCAN, C-SCAN
• Types of mass storage

– HDDs, SSDs, tertiary storage, RAID

1

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Today: I/O Systems
• How does I/O hardware influence the OS?
• What I/O services does the OS provide?
• How does the OS implement those services?
• How can the OS improve the performance of I/O?

2

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Architecture of I/O Systems
• Key components

– System bus: allows the device to communicate with the CPU, typically
shared by multiple devices.

– A device port typically consisting of 4 registers:
• Status indicates a device busy, data ready, or error condition
• Control: command to perform
• Data-in: data being sent from the device to the CPU
• Data-out: data being sent from the CPU to the device

– Controller: receives commands from the system bus, translates them into
device actions, and reads/writes data onto the system bus.

– The device itself
• Traditional devices: disk drive, printer, keyboard, modem, mouse,

display
• Non-traditional devices: joystick, robot actuators, flying surfaces

of an airplane, fuel injection system of a car, ...

3

Computer Science Lecture 19, page Computer Science

PCI Bus Structure

CS377: Operating Systems 4

Computer Science Lecture 19, page Computer Science

Kernel I/O Subsystem

CS377: Operating Systems 5

Computer Science Lecture 19, page Computer Science

Device I/O Port location on PCs

CS377: Operating Systems 6

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

I/O Services Provided by OS
• Naming of files and devices. (On Unix, devices appear as files in

the /dev directory)
• Access control.
• Operations appropriate to the files and devices.
• Device allocation.
• Buffering, caching, and spooling to allow efficient communication

with devices.
• I/O scheduling.
• Error handling and failure recovery associated with devices

(command retries, for example).
• Device drivers to implement device-specific behaviors.

7

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Communication using Polling
• CPU busy-waits until the status is idle.
• CPU sets the command register and data-out if it is an output operation.
• CPU sets status to command-ready => controller sets status to busy.
• Controller reads the command register and performs the command, placing a

value in data-in if it is an input command.
• If the operation succeeds, the controller changes the status to idle.
• CPU observes the change to idle and reads the data if it was an input operation.
• Good choice if data must be handled promptly, like for a modem or keyboard.
• What happens if the device is slow compared to the CPU?

8

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Communication using Interrupts
• Rather than using busy

waiting, the device can
interrupt the CPU when it
completes an I/O operation.

• On an I/O interrupt:
– Determine which device caused

the interrupt.
– If the last command was an

input operation, retrieve the data
from the device register.

– Start the next operation for that
device.

9

Computer Science Lecture 19, page Computer Science

Intel x86 Event Vectors

CS377: Operating Systems 10

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Direct Memory Access
• For devices that transfer large volumes of data at a time (like a

disk block), it is expensive to have the CPU retrieve these one
byte at a time.

• Solution: Direct memory access (DMA)
– Use a sophisticated DMA controller that can write directly to memory.

Instead of data-in/data-out registers, it has an address register.
– The CPU tells the DMA the locations of the source and destination of the

transfer.
– The DMA controller operates the bus and interrupts the CPU when the

entire transfer is complete, instead of when each byte is ready.
– The DMA controller and the CPU compete for the memory bus, slowing

down the CPU somewhat, but still providing better performance than if the
CPU had to do the transfer itself.

11

Computer Science Lecture 19, page Computer Science

Steps in DMA transfer

CS377: Operating Systems 12

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Application Programmer's View of I/O Devices

• The OS provides a high-level interface to devices, greatly simplifying the
programmer's job.
– Standard interfaces are provided for related devices.
– Device dependencies are encapsulated in device drivers.
– New devices can be supported by providing a new device driver.

• Device characteristics:
– Transfer unit: character or block
– Access method: sequential or random access
– Timing: synchronous or asynchronous

• Most devices are asynchronous, while I/O system calls are synchronous => The
OS implements blocking I/O

– Sharable or dedicated
– Speed
– Operations: Input, output, or both
– Examples: keyboard (sequential, character), disk (block, random or sequential)

13

Computer Science Lecture 19, page Computer Science

Examples of I/O Device types

CS377: Operating Systems 14

Computer Science Lecture 19, page Computer Science

Block and Character devices

• Block devices include disk drives
– Commands include read, write, seek
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character devices include keyboards, mice, serial ports
– Commands include get, put
– Libraries layered on top for added functionality (e.g., line

editing, backspace)

CS377: Operating Systems 15

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

I/O Buffering
I/O devices typically contain a small on-board memory where they

can store data temporarily before transferring to/from the CPU.

• A disk buffer stores a block when it is read from the disk.
• It is transferred over the bus by the DMA controller into a buffer

in physical memory.
• The DMA controller interrupts the CPU when the transfer is done.

16

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Why buffer on the OS side?
• To cope with speed mismatches between devices.

– Example: Receive file over a network (slow) and store to disk (faster)

• To cope with devices that have different data transfer sizes.
– Example: ftp brings the file over the network one packet at a time. Stores

to disk happen one block at a time.

• To minimize the time a user process is blocked on a write.
– Writes => copy data to a kernel buffer and return control to the user

program. The write from the kernel buffer to the disk is done later.

17

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Caching
• Improve disk performance by reducing the number of disk

accesses.
– Idea: keep recently used disk blocks in main memory after the I/O call that brought

them into memory completes.
– Example: Read (diskAddress)
 If (block in memory) return value from memory
 Else ReadSector(diskAddress)
– Example: Write (diskAddress)
 If (block in memory) update value in memory
 Else Allocate space in memory, read block from disk, and update value in memory

• What should happen when we write to a cache?
– write-through policy (write to all levels of memory containing the block, including

to disk). High reliability.
– write-back policy (write only to the fastest memory containing the block, write to

slower memories and disk sometime later). Faster.

18

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Putting the Pieces Together - a Typical
Read Call

1. User process requests a read from a device.
2. OS checks if data is in a buffer. If not,

a) OS tells the device driver to perform input.
b) Device driver tells the DMA controller what to do and blocks itself.
c) DMA controller transfers the data to the kernel buffer when it has all been

retrieved from the device.
d) DMA controller interrupts the CPU when the transfer is complete.

3. OS transfers the data to the user process and places the process
in the ready queue.

4. When the process gets the CPU, it begins execution following
the system call.

19

Computer Science Lecture 19, page Computer Science

I/O request Lifecycle

CS377: Operating Systems 20

Computer Science Lecture 19, page Computer Science CS377: Operating Systems

Summary
• I/O is expensive for several reasons:

– Slow devices and slow communication links
– Contention from multiple processes.
– I/O is typically supported via system calls and interrupt handling, which are

slow.
• Approaches to improving performance:

– Reduce data copying by caching in memory
– Reduce interrupt frequency by using large data transfers
– Offload computation from the main CPU by using DMA controllers.
– Increase the number of devices to reduce contention for a single device and

thereby improve CPU utilization.
– Increase physical memory to reduce amount of time paging and thereby

improve CPU utilization.

21

