
Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Last Class: Memory Management
• Static & Dynamic Relocation
• Fragmentation
• Paging

1

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Recap: Paging

Processes typically do not use their entire space in memory all the
time.

Paging
1. divides and assigns processes to fixed sized pages,
2. then selectively allocates pages to frames in memory, and
3. manages (moves, removes, reallocates) pages in memory.

2

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging: Example
Mapping pages in logical memory to frames in physical memory

3

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Hardware
• Problem: How do we find addresses when pages are not allocated

contiguously in memory?
• Virtual Address:

– Processes use a virtual (logical) address to name memory locations.
– Process generates contiguous, virtual addresses from 0 to size of the

process.
– The OS lays the process down on pages and the paging hardware translates

virtual addresses to actual physical addresses in memory.
– In paging, the virtual address identifies the page and the page offset.
– page table keeps track of the page frame in memory in which the page is

located.

4

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Hardware
Translating a virtual address to physical address

5

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Hardware: Practical Details
• Page size (frame sizes) are typically a power of 2 between 512

bytes and 8192 bytes per page.
• Powers of 2 make the translation of virtual addresses into physical

addresses easier. For example, given
• virtual address space of size 2m bytes and a page of size 2n, then
• the high order m-n bits of a virtual address select the page,
• the low order n bits select the offset in the page

6

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Address Translation Example

7

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Address Translation Example
• How big is the page table?

• How many bits for an address, assuming
we can address 1 byte increments?

• What part is p, and d?

• Given virtual address 24, do the virtual
to physical translation.

8

- 16 entries (256 memory bytes / 16 byte pages)

- 8 bits (to address 256 bytes)

- page p=1 (24 / 16 = 1), offset d=8 (24 % 16 = 8)
- frame f=6 (from page table), offset d=8

- 4 bits for page and 4 for offset

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Address Translation Example 2
• Typical 32-bit architecture: address

words (4 bytes) rather than bytes

• How many bits for an address?

• What part is p, and d?

• Given virtual address 13, do the
virtual to physical translation.

9

– 4 bits for for page (still 16 pages), 2 bits for offset

– 6 bits (64 addresses of 4-byte
words in 256 byte memory
space)

– p=3 (13 words / 4-word pages), d=1 (13 % 4)
– Frame=9, d=1

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Making Paging Efficient
How should we store the page table?
• Registers: Advantages? Disadvantages?
• Memory: Advantages? Disadvantages?

10

• TLB (translation look-aside buffer): a fast fully associative
memory that stores page numbers (key) and the frame (value) in
which they are stored.

– if memory accesses have locality, address translation has locality too.
– typical TLB sizes range from 8 to 2048 entries.

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

The Translation Look-aside Buffer (TLB)

v: valid bit that says the entry is up-to-date

11

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Costs of Using The TLB
• What is the effective memory access cost if the page table is in

memory?

• What is the effective memory access cost with a TLB?

A large TLB improves hit ratio, decreases average memory cost.

12

– ema = 2 * ma

– TLB hit ratio p, TLB access cost
– ema = (ma + TLB) * p + (2 * ma + TLB) * (1 - p)

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Initializing Memory when Starting a Process

1. Process needing k pages arrives.
2. If k page frames are free, then allocate these frames to pages.

Else free frames that are no longer needed.
3. The OS puts each page in a frame and then puts the frame

number in the corresponding entry in the page table.
4. OS marks all TLB entries as invalid (flushes the TLB).
5. OS starts process.
6. As process executes, OS loads TLB entries as each page is

accessed, replacing an existing entry if the TLB is full.

13

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Saving/Restoring Memory on a Context
Switch

• The Process Control Block (PCB) must be extended to contain:
– The page table
– Possibly a copy of the TLB

• On a context switch:
1. Copy the page table base register value to the PCB.
2. Copy the TLB to the PCB (optionally).
3. Flush the TLB.
4. Restore the page table base register.
5. Restore the TLB if it was saved.

14

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Sharing
Paging allows sharing of memory across processes, since memory used by a

process no longer needs to be contiguous.
• Shared code must be reentrant, that means the processes that are using it cannot

change it (e.g., no data in reentrant code).
• Sharing of pages is similar to the way threads share text and memory with each

other.
• A shared page may exist in different parts of the virtual address space of each

process, but the virtual addresses map to the same physical address.
• The user program (e.g., emacs) marks text segment of a program as reentrant

with a system call.
• The OS keeps track of available reentrant code in memory and reuses them if a

new process requests the same program.
• Can greatly reduce overall memory requirements for commonly used

applications.

15

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Summary
• Paging is a big improvement over relocation:

– They eliminate the problem of external fragmentation and therefore the
need for compaction.

– They allow sharing of code pages among processes, reducing overall
memory requirements.

– They enable processes to run when they are only partially loaded in main
memory.

• However, paging has its costs:
– Translating from a virtual address to a physical address is more time-

consuming.
– Paging requires hardware support in the form of a TLB to be efficient

enough.
– Paging requires more complex OS to maintain the page table.

16

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Segmentation
Segments take the user's view of the program and gives it to the OS.
• User views the program in logical segments, e.g., code, global

variables, stack, heap (dynamic data structures), not a single linear
array of bytes.

• The compiler generates references that identify the segment and
the offset in the segment, e.g., a code segment with offset = 399

• Thus processes thus use virtual addresses that are segments and
segment offsets.

⇒Segments make it easier for the call stack and heap to grow
dynamically. Why?

⇒Segments make both sharing and protection easier. Why?

17

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Implementing Segmentation
• Segment table: each entry contains a base address in memory,

length of segment, and protection information (can this segment
be shared, read, modified, etc.).

• Hardware support: multiple base/limit registers.

18

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Implementing Segmentation
• Compiler needs to generate virtual addresses whose upper order

bits are a segment number.
• Segmentation can be combined with a dynamic or static relocation

system,
– Each segment is allocated a contiguous piece of physical memory.
– External fragmentation can be a problem again

• Similar memory mapping algorithm as paging. We need
something like the TLB if programs can have lots of segments

19

Let's combine the ease of sharing we get from segments
with efficient memory utilization we get from pages.

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Combining Segments and Paging
• Treat virtual address space as a collection of segments (logical

units) of arbitrary sizes.
• Treat physical memory as a sequence of fixed size page frames.
• Segments are typically larger than page frames,
⇒Map a logical segment onto multiple page frames by paging the

segments

20

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Combining Segments and Paging

21

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Addresses in Segmented Paging
• A virtual address becomes a segment number, a page within that

segment, and an offset within the page.
• The segment number indexes into the segment table which yields

the base address of the page table for that segment.
• Check the remainder of the address (page number and offset)

against the limit of the segment.
• Use the page number to index the page table. The entry is the

frame. (The rest of this is just like paging.)
• Add the frame and the offset to get the physical address.

22

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Addresses in Segmented Paging

23

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Sharing Pages and Segments:
Implementation Issues

• Where are the segment table and page tables stored?
– Store segment tables in a small number of associative registers; page tables

are in main memory with a TLB (faster but limits the number of segments a
program can have)

– Both the segment tables and page tables can be in main memory with the
segment index and page index combined used in the TLB lookup (slower
but no restrictions on the number of segments per program)

• Protection and valid bits can go either on the segment or the page
table entries

• Note: Can do multiple levels of paging and segmentation when
the tables get too big.

24

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Addresses in Segmented Paging: Example

• Memory size of 256 addressable
words (assume word=byte),

• a page table indexing 8 pages,
• a page size of 32 words, and
• 8 logical segments

• How many bits is a physical address?

• How many bits is a virtual address?

• How many bits for the seg #, page #, offset?

25

8 bits (256 addresses)

3 seg, 3 page, 5 offset

11 bits (3+3+5)

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Sharing Pages and Segments
• Share individual pages by copying page table entries.
• Share whole segments by sharing segment table entries, which is

the same as sharing the page table for that segment.
• Need protection bits to specify and enforce read/write permission.

– When would segments containing code be shared?
– When would segments containing data be shared?

26

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Segmented Paging: Costs and Benefits
• Benefits: merge compiler + OS view of memory, flexible process

growth, no external fragmentation, memory sharing between
processes.

• Costs: somewhat slower context switches, slower address
translation.

• Pure paging system => (virtual address space)/(page size) entries
in page table. How many entries in a segmented paging system?

• What is the performance of address translation of segmented
paging compared to contiguous allocation with relocation?
Compared to pure paging?

• How does fragmentation of segmented paging compare with
contiguous allocation? With pure paging?

27

Computer Science Lecture 13, page Computer Science

Large Address Spaces

• Techniques to scale to very large address spaces
– 64 bit machines

• Sparse page tables

• Inverted page table
– Hash table with key-value lookups (instead of array)
– Key = page number, value = frame number
– Page table lookups are slow
– Use TLBs for efficiency

CS377: Operating Systems 28

Computer Science Lecture 13, page Computer Science

Multilevel Page Tables

CS377: Operating Systems 29

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Putting it all together
• Relocation using Base and Limit registers

– simple, but inflexible

• Segmentation:
– compiler's view presented to OS
– segment tables tend to be small
– memory allocation is expensive and complicated (first fit, worst fit, best

fit).
– compaction is needed to resolve external fragmentation.

30

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Putting it all together
• Paging:

– simplifies memory allocation since any page can be allocated to any frame
– page tables can be very large (especially when virtual address space is large

and pages are small)

• Segmentation & Paging
– only need to allocate as many page table entries as we need (large virtual

address spaces are not a problem).
– easy memory allocation, any frame can be used
– sharing at either the page or segment level
– increased internal fragmentation over paging
– two lookups per memory reference

31

