
Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Last Class: Synchronization Problems
• Reader Writer

– Multiple readers, single writer
– In practice, use read-write locks

• Dining Philosophers
– Need to hold multiple resources to perform task

1

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Real-World Examples

• Producer-consumer
– Audio/Video player: network and display threads; shared buffer
– Web servers: master thread and slave thread

• Reader-writer
– Banking system: read account balances versus update

• Dining Philosophers
– Cooperating processes that need to share limited resources

• Set of processes that need to lock multiple resources
– Disk and tape (backup),

• Travel reservation: hotel, airline, car rental databases

2

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Today: Deadlocks
• What are deadlocks?

• Conditions for deadlocks

• Deadlock detection

• Deadlock prevention

• Deadlock avoidance

3

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Deadlocks
• Deadlock: A condition where two or more threads are waiting for

an event that can only be generated by these same threads.
• Example:

 Process A: Process B:

 printer.Wait(); disk.Wait();
 disk.Wait(); printer.Wait();

 // copy from disk // copy from disk
 // to printer // to printer

 printer.Signal(); printer.Signal();
 disk.Signal(); disk.Signal();

4

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Deadlocks: Terminology
• Deadlock can occur when several threads compete for a finite

number of resources simultaneously
• Deadlock detection finds instances of deadlock when threads stop

making progress and tries to recover
• Deadlock prevention imposes restrictions on programs to prevent

the possibility of deadlock
• Deadlock avoidance algorithms check resource requests and

availability at runtime to avoid deadlock
• Starvation occurs when a thread waits indefinitely for some

resource, but other threads are actually using it (making progress).
 => Starvation is a different condition from deadlock

5

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Necessary Conditions for Deadlock
Deadlock can happen if all the following conditions hold.

• Mutual Exclusion: at least one thread must hold a resource in non-
sharable mode, i.e., the resource may only be used by one thread at a
time.

• Hold and Wait: at least one thread holds a resource and is waiting for
other resource(s) to become available. A different thread holds the
resource(s).

• No Preemption: A thread can only release a resource voluntarily;
another thread or the OS cannot force the thread to release the resource.

• Circular wait: A set of waiting threads {t1, ..., tn} where ti is waiting on
ti+1 (i = 1 to n) and tn is waiting on t1.

6

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Deadlock Detection Using a Resource
Allocation Graph

• We define a graph with vertices that represent both resources
{r1, ..., rm} and threads {t1, ..., tn}.
– A directed edge from a thread to a resource, ti → rj indicates that ti has

requested that resource, but has not yet acquired it (Request Edge)
– A directed edge from a resource to a thread rj → ti indicates that the OS has

allocated rj to ti (Assignment Edge)

• If the graph has no cycles, no deadlock exists.
• If the graph has a cycle, deadlock might exist.

7

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Deadlock Detection Using a Resource
Allocation Graph

• What if there are multiple interchangeable instances of a resource?
– Then a cycle indicates only that deadlock might exist.
– If any instance of a resource involved in the cycle is held by a thread not in

the cycle, then we can make progress when that resource is released.

8

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Detect Deadlock and Then Correct It
• Scan the resource allocation graph for cycles, and then break the cycles.
• Different ways of breaking a cycle:

– Kill all threads in the cycle.
– Kill the threads one at a time, forcing them to give up resources.
– Preempt resources one at a time rolling back the state of the thread holding the resource

to the state it was in prior to getting the resource. This technique is common in database
transactions.

• Detecting cycles takes O(n2) time, where n is |T| + |R|. When should we execute this
algorithm?
– Just before granting a resource, check if granting it would lead to a cycle?

(Each request is then O(n2).)
– Whenever a resource request can't be filled? (Each failed request is O(n2).)
– On a regular schedule (hourly or ...)? (May take a long time to detect deadlock)
– When CPU utilization drops below some threshold? (May take a long time to

detect deadlock)
• What do current OS do?

– Leave it to the programmer/application.

9

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Deadlock Prevention
Prevent deadlock: ensure that at least one of the necessary

conditions doesn't hold.
1. Mutual Exclusion: make resources sharable (but not all resources

can be shared)
2. Hold and Wait:

– Guarantee that a thread cannot hold one resource when it requests another
– Make threads request all the resources they need at once and make the

thread release all resources before requesting a new set.
3. No Preemption:

– If a thread requests a resource that cannot be immediately allocated to it,
then the OS preempts (releases) all the resources that the thread is currently
holding.

– Only when all of the resources are available, will the OS restart the thread.
– Problem: not all resources can be easily preempted, like printers.

4. Circular wait: impose an ordering (numbering) on the resources
and request them in order.

10

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Deadlock Avoidance with Resource
Reservation

• Threads provide advance information about the maximum
resources they may need during execution

• Define a sequence of threads {t1, ..., tn} as safe if for each ti, the
resources that ti can still request can be satisfied by the currently
available resources plus the resources held by all tj, j < i.

• A safe state is a state in which there is a safe sequence for the
threads.

• An unsafe state is not equivalent to deadlock, it just may lead to
deadlock, since some threads might not actually use the maximum
resources they have declared.

• Grant a resource to a thread is the new state is safe
• If the new state is unsafe, the thread must wait even if the resource

is currently available.
• This algorithm ensures no circular-wait condition exists.

11

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Example
•Threads t1, t2, and t3 are competing for 12 tape drives.

•Currently, 11 drives are allocated to the threads, leaving 1 available.
•The current state is safe (there exists a safe sequence, {t1, t2, t3} where all threads may
obtain their maximum number of resources without waiting)

– t1 can complete with the current resource allocation

– t2 can complete with its current resources, plus all of t1's resources, and the unallocated tape
drive.

•t3 can complete with all its current resources, all of t1 and t2's resources, and the unallocated
tape drive.

max
need

in use could
want

t1 4 3 1
t2 8 4 4
t3 12 4 8

12

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Example (contd)

•If t3 requests one more drive, then it must wait because allocating the drive would
lead to an unsafe state.
•There are now 0 available drives, but each thread might need at least one more
drive.

max
need

in use could
want

t1 4 3 1

t2 8 4 4

t3 12 5 7

13

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Deadlock Avoidance using Resource
Allocation Graph

• Claim edges (dotted): an edge from a thread to a resource that may be requested
in the future

• Satisfying a request results in converting a claim edge to an allocation edge and
changing its direction.

• A cycle in this extended resource allocation graph indicates an unsafe state.
• If the allocation would result in an unsafe state, the allocation is denied even if

the resource is available.
– The claim edge is converted to a request edge and the thread waits.

• This solution does not work for multiple instances of the same resource.

14

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Banker's Algorithm
• This algorithm handles multiple instances of the same resource.
• Force threads to provide advance information about what

resources they may need for the duration of the execution.
• The resources requested may not exceed the total available in the

system.
• The algorithm allocates resources to a requesting thread if the

allocation leaves the system in a safe state.
• Otherwise, the thread must wait.

15

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Avoiding Deadlock with Banker's Algorithm

class ResourceManager {

 int n; // # threads

 int m; // # resources

 int avail[m], // # of available resources of each type

 max[n,m], // # of each resource that each thread may want

 alloc[n,m], //# of each resource that each thread is using

 need[n,m], // # of resources that each thread might still
request

16

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Banker's Algorithm:Resource Allocation
 public void synchronized allocate (int request[m], int i) {
 // request contains the resources being requested
 // i is the thread making the request

 if (request > need[i]) //vector comparison
 error(); // Can't request more than you declared
 else while (request[i] > avail)
 wait(); // Insufficient resources available

 // enough resources exist to satisfy the requests
 // See if the request would lead to an unsafe state
 avail = avail - request; // vector additions
 alloc[i] = alloc[i] + request;
 need[i] = need[i] - request;

 while (!safeState ()) {
 // if this is an unsafe state, undo the allocation and wait
 <undo the changes to avail, alloc[i], and need[i]>
 wait ();
 <redo the changes to avail, alloc[i], and need[i]>
 } }

17

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Banker's Algorithm: Safety Check
private boolean safeState () {
 boolean work[m] = avail[m]; // accommodate all resources
 boolean finish[n] = false; // none finished yet

 // find a process that can complete its work now
 while (find i such that finish[i] == false and need[i] <= work) { // vector operations
 work = work + alloc[i]
 finish[i] = true;
 }

 if (finish[i] == true for all i)
 return true;
 else
 return false;
}

• Worst case: requires O(mn2) operations to determine if the system is
safe.

18

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Example using Banker's Algorithm
System snapshot:

Max Allocation Available

A B C A B C A B C

P0 0 0 1 0 0 1

P1 1 7 5 1 0 0

P2 2 3 5 1 3 5

P3 0 6 5 0 6 3

Total 2 9 9 1 5 2

19

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Example (contd)
•How many resources are there of type (A,B,C)?

•What is the contents of the Need matrix?

•Is the system in a safe state? Why?

A B C
P0

P1

P2

P3

20

A B C
P0 0 0 0
P1 0 7 5
P2 1 0 0
P3 0 0 2

Max Allocation Available

A B C A B C A B C
P0 0 0 1 0 0 1

P1 1 7 5 1 0 0
P2 2 3 5 1 3 5
P3 0 6 5 0 6 3

Total 2 9 9 1 5 2

 resources = total + avail: (3,14,11)

Need = Max - Allocation

•Yes, because the processes can be executed in the sequence P0, P2, P1, P3, even if each
process asks for its maximum number of resources when it executes.

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Example (contd)
•If a request from process P1 arrives for additional resources of (0,5,2), can the
Banker's algorithm grant the request immediately?
•What would be the new system state after the allocation?

•What is a sequence of process execution that satisfies the safety constraint?

21

Max Allocation Available
A B C A B C A B C

P0 0 0 1 0 0 1
P1 1 7 5 1 0 0
P2 2 3 5 1 3 5
P3 0 6 5 0 6 3

Total 2 9 9 1 5 2

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Example: solutions
• If a request from process P1 arrives for additional resources of (0,5,2), can the Banker's

algorithm grant the request immediately? Show the system state, and other criteria.
 Yes. Since

1. (0,5,2) ≤ (1,5,2), the Available resources, and
2. (0,5,2) + (1,0,0) = (1,5,2) ≤ (1,7,5), the maximum number P1 can request.
3. The new system state after the allocation is:

and the sequence P0, P2, P1, P3 satisfies the safety constraint.

Max Allocation Available
A B C A B C A B C

P0 0 0 1 0 0 1
P1 1 7 5 1 5 2
P2 2 3 5 1 3 5
P3 0 6 5 0 6 3

2 14 11 1 0 0

22

Computer Science Lecture 10, page Computer Science CS377: Operating Systems

Summary
• Deadlock: situation in which a set of threads/processes cannot

proceed because each requires resources held by another

• Detection and recovery: recognize deadlock after it has occurred
and break it

• Prevention: design resource allocation strategies that guarantee
that one of the necessary deadlock conditions never holds

• Avoidance: runtime checks to avoid deadlock when allocating
resources

• Ignore the possibility! (Most OSes use this option!)

23

