
Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Last Class: Threads
• Thread: a single execution stream within a process
• Generalizes the idea of a process
• Shared address space within a process

• User level threads: user library, no kernel context switches
• Kernel level threads: kernel support, parallelism

• Same scheduling strategies can be used as for (single-threaded)
processes
– FCFS, RR, SJF, MLFQ, Lottery...

1

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Today: Synchronization
• Synchronization

– Mutual exclusion
– Critical sections

• Example: Too Much Milk

• Locks
• Synchronization primitives are required to ensure that only one thread executes in
a critical section at a time.

2

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Recap: Synchronization
•What kind of knowledge and mechanisms do we need to get independent processes to
communicate and get a consistent view of the world (computer state)?
•Example: Too Much Milk

Time You Your roommate
3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery store
3:15 Arrive home
3:20 Arrive at grocery store Look in fridge, no milk
3:25 Buy milk Leave for grocery store
3:35 Arrive home, put milk in fridge
3:45 Buy milk
3:50 Arrive home, put up milk
3:50 Oh no!

3

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Recap: Synchronization Terminology
• Synchronization: use of atomic operations to ensure cooperation

between threads
• Mutual Exclusion: ensure that only one thread does a particular

activity at a time and excludes other threads from doing it at that
time

• Critical Section: piece of code that only one thread can execute
at a time

• Lock: mechanism to prevent another process from doing
something
– Lock before entering a critical section, or before accessing shared data.
– Unlock when leaving a critical section or when access to shared data is

complete
– Wait if locked

=> All synchronization involves waiting.

4

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Too Much Milk: Solution 1
• What are the correctness properties for this problem?

– Only one person buys milk at a time. (safety)
– Someone buys milk if you need it. (liveness)

• Restrict ourselves to atomic loads and stores as building blocks.
– Leave a note (a version of lock)
– Remove note (a version of unlock)
– Do not buy any milk if there is note (wait)

Thread A Thread B

if (noMilk & NoNote) { if (noMilk & NoNote) {
 leave Note; leave Note;
 buy milk; buy milk;
 remove note; remove note;
} }
 Does this work?

5

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Too Much Milk: Solution 2
How about using labeled notes so we can leave a note before

checking the the milk?

 Thread A Thread B

 leave note A leave note B
 if (noNote B) { if (noNote A) {
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 } }
 remove note; remove note;

Does this work?

6

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Too Much Milk: Solution 3
 Thread A Thread B

 leave note A leave note B
X: while (Note B) { Y: if (noNote A) {
 do nothing; if (noMilk){
 } buy milk;
 if (noMilk){ }
 buy milk; }
 } remove note B;
 remove note A;

Does this work?

7

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Correctness of Solution 3
• At point Y, either there is a note A or not.

1. If there is no note A, it is safe for thread B to check and buy milk, if needed.
(Thread A has not started yet).

2. If there is a note A, then thread A is checking and buying milk as needed or is
waiting for B to quit, so B quits by removing note B.

• At point X, either there is a note B or not.
1. If there is not a note B, it is safe for A to buy since B has either not started or quit.
2. If there is a note B, A waits until there is no longer a note B, and either finds milk

that B bought or buys it if needed.

• Thus, thread B buys milk (which thread A finds) or not, but either way it
removes note B. Since thread A loops, it waits for B to buy milk or not, and
then if B did not buy, it buys the milk.

8

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Is Solution 3 a good solution?
• It is too complicated - it was hard to convince ourselves this

solution works.

• It is asymmetrical - thread A and B are different. Thus, adding
more threads would require different code for each new thread and
modifications to existing threads.

• A is busy waiting - A is consuming CPU resources despite the fact
that it is not doing any useful work.

=> This solution relies on loads and stores being atomic.

9

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Language Support for Synchronization
Have your programming language provide atomic routines for

synchronization.

• Locks: one process holds a lock at a time, does its critical section
releases lock.

• Semaphores: more general version of locks.

• Monitors: connects shared data to synchronization primitives.

=> All of these require some hardware support, and waiting.

10

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Locks
• Locks: provide mutual exclusion to shared data with two

“atomic” routines:
– Lock.Acquire - wait until lock is free, then grab it.
– Lock.Release - unlock, and wake up any thread waiting in Acquire.

Rules for using a lock:

• Always acquire the lock before accessing shared data.
• Always release the lock after finishing with shared data.
• Lock is initially free.

11

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Implementing Too Much Milk with Locks
Too Much Milk

 Thread A Thread B

 Lock.Acquire(); Lock.Acquire();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Lock.Release(); Lock.Release();

• This solution is clean and symmetric.
• How do we make Lock.Acquire and Lock.Release atomic?

12

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Hardware Support for Synchronization

•Implementing high level primitives requires low-level hardware support
•What we have and what we want

Concurrent programs

Low-level atomic
operations (hardware)

load/store interrupt disable test&set

High-level atomic
operations (software)

lock semaphore
monitors send & receive

13

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Implementing Locks By Disabling Interrupts

• There are two ways the CPU scheduler gets control:
– Internal Events: the thread does something to relinquish control (e.g., I/O).
– External Events: interrupts (e.g., time slice) cause the scheduler to take

control away from the running thread.
• On uniprocessors, we can prevent the scheduler from getting

control as follows:
– Internal Events: prevent these by not requesting any I/O operations

during a critical section.
– External Events: prevent these by disabling interrupts (i.e., tell the

hardware to delay handling any external events until after the thread is
finished with the critical section)

• Why not have the OS support Lock::Acquire() and Lock::Release
as system calls?

14

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Implementing Locks by Disabling Interrupts

• For uniprocessors, we can disable interrupts for high-level primitives like locks,
whose implementations are private to the kernel.

• The kernel ensures that interrupts are not disabled forever, just like it already
does during interrupt handling.

class Lock {
 public:
 void Acquire();
 void Release();
 private:
 int value;
 Queue Q;
}
Lock::Lock {
 // lock is free
 value = 0;
 // queue is empty
 Q = 0;
}

Lock::Acquire(Thread T){
// syscall: kernel execs this
disable interrupts;
 if (value == BUSY) {
 add T to Q
 put T to Sleep;
 } else {
 value = BUSY;
 }
 enable interrupts; }

Lock::Release() {
 disable interrupts;
 if queue not empty {
 take thread T off Q
 put T on ready queue
 } else {
 value = FREE
 }
 enable interrupts; }

15

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Atomic read-modify-write Instructions
• Atomic read-modify-write instructions atomically read a value

from memory into a register and write a new value.
– Straightforward to implement simply by adding a new instruction on a

uniprocessor.
– On a multiprocessor, the processor issuing the instruction must also be able

to invalidate any copies of the value the other processes may have in their
cache, i.e., the multiprocessor must support some type of cache coherence.

• Examples:
– Test&Set: (most architectures) read a value, write ‘1’ back, return old value
– Exchange: (x86) swaps value between register and memory.
– Compare&Swap: (68000) read value, if value matches register value r1,

exchange register r2 and value.

16

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Implementing Locks with Test&Set
• Test&Set: reads a value, writes ‘1’ to memory, and returns the old value.

class Lock { Acquire() {
 public: // if busy do nothing
 void Acquire(); while (test&set(value) == 1);
 void Release(); }
 private: Release() {
 int value; value = 0;
} }
Lock() {
 value = 0;
}

• If lock is free (value = 0), test&set reads 0, sets value to 1, and returns 0. The Lock is now
busy: the test in the while fails, and Acquire is complete.

• If lock is busy (value = 1), test&set reads 1, sets value to 1, and returns 1. The while
continues to loop until a Release executes.

17

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Busy Waiting
Acquire(){
 //if Busy, do nothing
 while (test&set(value) == 1);
}

• What's wrong with the above implementation?
– What is the CPU doing?
– What could happen to threads with different priorities?

• How can we get the waiting thread to give up the processor, so the
releasing thread can execute?

18

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Locks using Test&Set with minimal busy-
waiting

• Can we implement locks with test&set without any busy-waiting or disabling
interrupts?

• No, but we can minimize busy-waiting time by atomically checking the lock
value and giving up the CPU if the lock is busy

class Lock {
 // same declarations as earlier
 private int guard;
}
Acquire(T:Thread) {
 while (test&set(guard) == 1) ;
 if (value != FREE) {
 put T on Q;
 T.Sleep() & set guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 } }

Release() {
 // busy wait
 while (test&set(guard) == 1) ;
 if Q is not empty {
 take T off Q;
 put T on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;
}

19

Computer Science Lecture 7, page Computer Science CS377: Operating Systems

Summary
• Communication among threads is typically done through shared

variables.

• Critical sections identify pieces of code that cannot be executed in
parallel by multiple threads, typically code that accesses and/or
modifies the values of shared variables.

• Synchronization primitives are required to ensure that only one
thread executes in a critical section at a time.
– Achieving synchronization directly with loads and stores is tricky and error-

prone
– Solution: use high-level primitives such as locks, semaphores, monitors

20

