
Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Last Class: CPU Scheduling
• Pre-emptive versus non-preemptive schedulers
• Goals for Scheduling:

– Minimize average response time
– Maximize throughput
– Share CPU equally
– Other goals?

• Scheduling Algorithms:
– Selecting a scheduling algorithm is a policy decision - consider tradeoffs
– FSCS
– Round-robin
– SJF/SRTF
– MLFQ
– Lottery scheduler

1

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Today: Threads

• What are threads?

• Where should we implement threads? In the kernel? In a user
level threads package?

• How should we schedule threads (or processes) onto the CPU?

2

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Processes versus Threads
• A process defines the address space, text, resources, etc.,
• A thread defines a single sequential execution stream within a

process (PC, stack, registers).
• Threads extract the thread of control information from the

process
• Threads are bound to a single process.
• Each process may have multiple threads of control within it.

– The address space of a process is shared among all its threads
– No system calls are required to cooperate among threads
– Simpler than message passing and shared-memory

3

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Single and Multithreaded Processes

4

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Classifying Threaded Systems
Operating Systems can support one or many address spaces, and one or many

threads per address space.

5

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Example Threaded Program

• Creating a thread can be a system call to the kernel, or a
procedure call to a thread library (user code).

6

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Kernel Threads

• A kernel thread, also known as a lightweight process, is a thread
that the operating system knows about.

• Switching between kernel threads of the same process requires a
small context switch.
– The values of registers, program counter, and stack pointer must be

changed.
– Memory management information does not need to be changed since the

threads share an address space.
• The kernel must manage and schedule threads (as well as

processes), but it can use the same process scheduling algorithms.
!Switching between kernel threads is faster than
 switching between processes.

7

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

User-Level Threads
• A user-level thread is a thread that the OS does not know about.

• The OS only knows about the process containing the threads.

• The OS only schedules the process, not the threads within the
process.

• The programmer uses a thread library to manage threads (create
and delete them, synchronize them, and schedule them).

8

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

User-Level Threads

9

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

User-Level Threads: Advantages
• There is no context switch involved when switching threads.
• User-level thread scheduling is more flexible

– A user-level code can define a problem dependent thread scheduling policy.
– Each process might use a different scheduling algorithm for its own threads.
– A thread can voluntarily give up the processor by telling the scheduler it

will yield to other threads.
• User-level threads do not require system calls to create them or

context switches to move between them

! User-level threads are typically much faster than kernel
threads

10

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

User-Level Threads: Disadvantages
• No true parallelism

- Multiple threads in process cannot run concurrently
• Since the OS does not know about the existence of the user-level

threads, it may make poor scheduling decisions:
– It might run a process that only has idle threads.
– If a user-level thread is waiting for I/O, the entire process will wait.
– Solving this problem requires communication between the kernel and the

user-level thread manager.
• Since the OS just knows about the process, it schedules the

process the same way as other processes, regardless of the
number of user threads.

• For kernel threads, the more threads a process creates, the more
time slices the OS will dedicate to it.

11

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Example: Kernel and User-Level
Threads in Solaris

12

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Threading Models

• Many-to-one, one-to-one, many-to-many and two-level

13

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Thread Libraries

• Thread library provides programmer with API for
creating and managing threads

• Two primary ways of implementing
– Library entirely in user space
– Kernel-level library supported by the OS

14

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Pthreads

• May be provided either as user-level or kernel-level
• A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization
• API specifies behavior of the thread library,

implementation is up to development of the library
• Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

• WIN32 Threads: Similar to Posix, but for Windows

15

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Java Threads
• Java threads are managed by the JVM

• Typically implemented using the threads model
provided by underlying OS

• Java threads may be created by:

– Extending Thread class
– Implementing the Runnable interface

16

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Examples

Pthreads:

 pthread_attr_init(&attr); /* set default attrributes */

 pthread_create(&tid, &attr, sum, ¶m);

Win32 threads

ThreadHandle = CreateThread(NULL, 0, Sum, &Param, 0, &ThreadID);

Java Threads:

Sum sumObject = new Sum();

Thread t = new Thread(new Summation(param, SumObject));

t.start(); // start the thread

17

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Summary

• Thread: a single execution stream within a process
• Switching between user-level threads is faster than between kernel

threads since a context switch is not required.
• User-level threads may result in the kernel making poor

scheduling decisions, resulting in slower process execution than if
kernel threads were used.

• Many scheduling algorithms exist. Selecting an algorithm is a
policy decision and should be based on characteristics of
processes being run and goals of operating system (minimize
response time, maximize throughput, ...).

18

