Question 1. (10 points) Recall that Banker's algorithm is designed to avoid deadlock by only allocating resources to threads such that the current allocation remains in a 'safe' state. Explain what is meant by a safe state. If the system moves into an unsafe state, will deadlock occur?

Question 2. (10 points) Describe the difference between internal and external fragmentation. What effect does paging have on each type of fragmentation?

Question 3. (10 points) Explain why systems using paging usually choose a page size that is a power of 2 (e.g., $2^8 = 256$ bytes, $2^9 = 512$ bytes, etc). What is the disadvantage of choosing a page size that is not a power of 2?

Question 4. (30 points) Consider a system with 32 byte pages and a total memory size of 2048 bytes. Assume that the system can access individual 4-byte words as the smallest unit of memory addressing (i.e., as in a typical 32-bit system). Recall that this means that an offset of 1 into a page means the second 4-byte word of the page (i.e., bytes 4-7).

- 1. (5 points) What is the total number of addressable words supported by this memory? How many different pages can be supported?
- 2. (5 points) How many bits are needed for an address? Of these, how many bits are needed for the page number (p) and how many for the offset (d)?
- 3. (15 points) Assuming the (partial) page table shown below, translate virtual address "28" to a physical address (i.e., the kth word of physical memory). To receive partial credit, be sure to show your work.

Page	Frame					
0	5					
1	14					
2	9					
3	7					
4	18					

4. (5 points) Suppose you extend your paging system to support segmented paging, where each process will have 7 segments. How many bits will be needed to encode a virtual address? How many bits for a physical address?

Question 5. (10 points) Explain an advantage and disadvantage to storing the page table in hardware versus in memory. Are these considerations any different when deciding how to store the segment table?

Question 6. (10 points) Suppose you want to run a set of applications which require more memory than your system has. Briefly explain two memory management techniques that your OS could use to support running these applications simultaneously.

Question 7. (20 points) Determine how the FIFO and MIN page replacement algorithms would handle the following page access pattern: A, B, C, D, E, A, B, E, D, B, A. As in the figures below, assume that the system has three frames of memory (each which can hold a single virtual page). Fill in the frame contents for each step of the access pattern and report the total number of page faults for each algorithm.

FIFO	Α	В	С	D	E	A	В	Ε	D	В	В	Α
FI												
F2												
F3												
Fault?												

MIN	Α	В	С	D	E	A	В	Ε	D	В	В	Α
FI												
F2												
F3												
Fault?												