
Sean Barker

Too Much Milk

1

Time You Your Roommate
3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery store
3:15 Arrive home
3:20 Arrive at grocery store Look in fridge, no milk
3:25 Buy milk Leave for grocery store
3:35 Arrive home, put milk in fridge
3:45 Buy milk
3:50 Arrive home with milk
3:50 Too much milk!

if (noMilk) {
buy milk;

}

if (noMilk) {
buy milk;

}

Sean Barker

Too Much Milk: Solution 1?

2

if (noMilk & NoNote) { 	 	 if (noMilk & NoNote) {
 leave note; 		 leave note;
 buy milk; 		 buy milk;
 remove note; 		 remove note;
} 	 	 }

Thread A Thread B

Sean Barker

Too Much Milk: Solution 2?

3

Thread A Thread B

1 leave note A;
2 if (noNote B) {
3 if (noMilk) {
4 buy milk;
5 }
6 }
7 remove note A;

1 leave note B;
2 if (noNote A) {
3 if (noMilk) {
4 buy milk;
5 }
6 }
7 remove note B;

Sean Barker

Too Much Milk: Solution 3?

4

Thread A Thread B

leave note A;
while (note B) {

do nothing;
}
if (noMilk) {

buy milk;
}
remove note A;

leave note B;
if (noNote A) {

if (noMilk) {
buy milk;

}
}
remove note B;

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7

Sean Barker

Critical Sections

5

 ...
arriveHome();

if (noMilk) {
buy milk;

}

makeCoffee();
 ...

Critical
Section

Requirement of mutual exclusion

Sean Barker

Locks

6

Sean Barker

Too Much Milk with Locks

7

Thread A Thread B

lock.acquire();
if (noMilk) {

buy milk;
}
lock.release();

1
2
3
4
5

1
2
3
4
5

lock.acquire();
if (noMilk) {

buy milk;
}
lock.release();

Sean Barker

Implementing Locks: Disabling Interrupts

8

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE;
 Queue Q = empty;
}

Lock::acquire() {
 disable interrupts;
 if (value == BUSY) {
 add curThread to Q;
 put curThread to sleep;
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Lock::release() {
 disable interrupts;
 if queue not empty {
 take thread T off Q;
 put T on ready queue;
 } else {
 value = FREE
 }
 enable interrupts;
}

Sean Barker

Implementing Locks: Atomic Test&Set

9

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE; // FREE = 0, BUSY = 1
}

Lock::acquire() {
 while (test&set(value) == BUSY) {

// do nothing
}

}

Lock::release() {
 value = FREE
}

Sean Barker

Minimizing Busy-Waiting

10

class Lock {
 public:
 void acquire();
 void release();
 private:
 int value = FREE; // FREE = 0, BUSY = 1
 int guard = 0;
 Queue Q = empty;
}

Lock::acquire() {
 while (test&set(guard) == 1) {

// do nothing
}
if (value == BUSY) {

put curThread on Q;
put curThread to sleep & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lock::release() {
 while (test&set(guard) == 1) {

// do nothing
}
if Q is not empty {

take T off Q;
put T on ready queue;

} else {
value = FREE;

}
guard = 0;

}

