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1 Introduction

C++ is an object-oriented language and is one of the most frequently used languages for development due to
its efficiency, relative portability, and its large number of libraries. C++ was created to add OO programming
to another language, C. C++ is almost a strict superset of C and C programs can be compiled by a C++
compiler.1 In fact, any of the C++ assignments in 377 can be completed strictly using C, but you will
probably be more comfortable using C++.
When comparing C++ and Java, there are more similarities than differences. This document will point out
the major differences to get you programming in C++ as quickly as possible. The highlights to look at are
C++’s handling of pointers and references; heap and stack memory allocation; and the Standard Template
Library (STL).

2 Basic Structure

First, we compare two simple programs written in Java and C++.

Java Hello World (filename: HelloWorldApp.java): C++ Hello World (filename: HelloWorld.cpp):

class HelloWorldApp {
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

#include <iostream>
using namespace std;

int main (){
cout << "Hello World!" << endl;
return 0;

}

In Javam the entry point for your program is a method named main inside a class. You run that particular
main by invoking the interpreter with that class name. In C++, there is only ONE main function. It must
be named main. It cannot reside within a class. main should return an integer – 0 when exiting normally.
This points out one major difference, which is C++ can have functions that are not object methods. Main is
one of those functions.
The using and include lines in the C++ program allow us to use external code. This is similar to import in
Java. In 377, we will generally tell you the necessary include files. For 377, always use the std namespace.
We will explain cout later.

1There are a few things that you can do in C that you can’t do in C++, but they are obscure constructions that you will not run
into.

1



3 Compiling and Running

Java: C++:
javac HelloWorldApp.java
java HelloWorldApp

g++ -o HelloWorld HelloWorld.cpp
./HelloWorld

In Java, you produce bytecode using javac and run it using the Java just-in-time compiler, java. C++ uses
a compiler, which creates a standalone executable. This executable can only be run on the same platform as
it was compiled for. For instance, if you compile HelloWorld for an x86 Linux machine, it will not run on a
Mac.
The ./ at the beginning of run line says to run the HelloWorld that is in the current directory. This has
nothing to do with C++, but many Unix/Linux systems do not include the current directory in the search
path. Also, it makes sure you get the right HelloWorld. For instance, there is a Unix program called test that
can be easily confused with your own program named test.

4 Intrinsic Types

Java: C++:
byte myByte;
short myShort;
int myInteger;
long myLong;

float myFloat;
double myDouble;

char myChar;
boolean myBoolean;

char myByte;
short myShort;
int myInteger;
long myLong;

float myFloat;
double myDouble;

char myChar;
bool myBoolean;

So the differences between Java and C++ intrinsic types are: C++ does not have a separate type for bytes,
just use char; and the boolean type is named bool.

5 Conditionals

Java: C++:
boolean temp = true;
boolean temp2 = false;

if (temp)
System.out.println("Hello World!");

if (temp == true)
System.out.println("Hello World!");

if (temp = true) // Assigns temp to be true
System.out.println("Hello World!");

bool temp = true;
int i = 1;

if (temp)
cout << "Hello World!" << endl;

if (temp == true)
cout << "Hello World!" << endl;

if (i)
cout << "Hello World!" << endl;
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Conditionals are almost exactly the same in Java and C++. In C++, conditionals can be applied to integers—
anything that is non-zero is true and anything that is zero is false.
NOTE: Be very careful in both C++ and Java with = and ==. In both languages, = does an assignment and
== does not – it tests equality. In C++, you can now do this with integers. For instance:

if (x = 0){
}

sets x to be 0 and evaluates to false. Unless you know what you are doing, always use == in conditionals.
In Java, the double form of the operators gives short-circuiting: && and ||. In C++, it does the same thing.

6 Other control flow

For loops, while, and do-while are the same syntax. C++ also has switch statements with the same syntax.
Remember break.

7 Pointers and Reference Variables

Pointers and reference variables are the most difficult concept in C++ when moving from Java. Every object
(and simple data types), in C++ and Java reside in the memory of the machine. The location in memory
is called an address. In Java you have no access to that address. You cannot read or change the address of
objects. In C++ you can.
In C++, a pointer contains the address of an object or data type. Pointers point to a specified type and are
denoted with *.

int *ptr;

The variable ptr is a pointer to an integer. At the moment ptr does not contain anything, it is uninitialized.
However, we can find out the address of some integer, using &, and store it in ptr. For instance:

int *ptr, *ptr2;
int x = 5;
int y = 4;

ptr = &x;
ptr2 = &y;

At the end of that example, ptr contains the address of x, and ptr2 contains the address of y. Additionally
we can dereference the get the value of what ptr points to:

int *ptr;
int x = 5;

ptr = &x;

cout << *ptr << endl; //prints 5

There are other tricky things you can do with pointers, but that is all you should need for 377. It you want
antoehr reference on the subject, take a look at: http://www.codeproject.com/cpp/pointers.
asp.
There is something else in C++ called a reference variable. These are most useful in function arguments
discussed later.
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7.1 Assignment

In C++, the assignment operator works a little different than in Java. For simple data types, it works exactly
the same. However, for objects it works differently.
In Java, assignment copies a reference to the object. In C++, it COPIES the object. If you want to copy a
reference, then use pointers. For instance, in C++:

SomeClass x, y;
SomeClass *a;

x=y; // This copies object y to x. Modifying x does NOT modify y.

a=&x; // This copies a reference to x.
// Modifying the object a points to modifies x.

7.2 Object Instantiation

In Java, if you declare and instantiate an object like this:

SomeClass x;

x = new SomeClass();

In C++, if you declare an object, it instantiates it for you:

SomeClass x;

7.3 The − > Operator

For pointers to objects you can call methods and modify variables like so:

SomeClass x;
SomeClass *a;

a=&x;
(*a).SomeMethod();

So we have dereferenced a and called its SomeMethod. This is ugly. We can use the − > operator to do the
same thing:

SomeClass x;
SomeClass *a;

a=&x;
a->SomeMethod();

Pretty, huh?

8 Global Variables, Functions and Parameters

In C++, you can have variables that are not members of objects. That is called a global variable. That
variable is accessible from any function or object in the same source file. NOTE: Global variables are
generally considered poor programming form. However, in this class I will grant you some leeway in using
them. Do not abuse this. I consider making loop control variables global a serious abuse.
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Similar to global variables, there are functions that are not methods. For instance main is not a method of
any object. Similarly you can create new functions that are not contained in objects. These functions can
take parameters just like methods. For instance:

#include <iostream>
using namespace std;

void foo(int i){
cout << i << endl; // Prints 1

}

int main (){
foo (1);

return 0;
}

Similar to Java, C++ functions can return nothing (void), simple data types, or objects. If you return an
object in C++, you are reutrning a COPY of that object, not a reference. You can return a pointer to an
object, if you want to return a reference.
But here is where Java and C++ have one major difference: parameters. In Java simple data types are passed
by value (a copy), and objects are passed by reference. In C++ both simple data types and objects are passed
by value!2 However, functions would be fairly useless in C++ if we couldn’t change what we passed. That
is where pointers come in. Quite simply:

#include <iostream>
using namespace std;

void foo(int *i){

*i = 6;
}

void bar(int i){
i = 10;

}

int main (){
int i = 0;

foo (&i);
cout << i << endl; // prints 6

bar (i);
cout << i << endl; // prints 6

bar (&i); // WOULD NOT COMPILE

return 0;
}

In the above example, we have a function foo that takes a pointer to an integer as a parameter. When we call
foo, we have to pass it the address of an integer. So foo is modifying the same i as main. The function bar

2This is more consistent than Java, and one of the things that C# fixes. C# passes EVERYTHING by reference including simple
data types.
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takes i by value and any changes made are lost. The last call to bar attempts to call bar with an address to an
integer, not an integer, and would not compile.
Ugly, huh? In C++, there is a slightly simpler way of accomplishing the exact same thing:

#include <iostream>
using namespace std;

void foo(int &i){
i = 6;

}

int main (){
int i = 0;

foo (i);
cout << i << endl; // prints 6.

return 0;
}

The integer i in foo is a reference variable. It takes care of passing the address, and dereferencing i when it
is used in foo. This is cleaner and easier to understand, but both are valid. However, you cannot avoid the
uglier form. If I give you a function to call then it will be of the first form.3

9 Arrays

Java and C++ both have arrays. Indexes start at 0, and you index into them using [ ]. However, arrays
behave a little differently in C++. First, the elements of the array do not need to be allocated with new,
C++ allocates them for you. For instance, if you create an array of Objects, it is an array of Objects, not
an array of references like in Java. Second, C++ arrays do not know how large they are. You have to keep
track of this yourself. C++ will not stop you from going past the end or beginning of the array. This is a
programming error and will often crash your program. Third, if you refer to an array without a subscript,
C++ treats this is a pointer to the first element. For instance, in this program we pass a pointer to qux to foo,
which modifies the contents of the first element.

#include <iostream>

using namespace std;

void foo (int bar[]){
bar[0] = 5;

}

int main(){

int qux[10];

qux[0] = 10;
foo (qux);

cout << qux[0] << endl; // Prints 5

3This maintains compatibility with C.
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}

You can also create an array of pointers.

#include <iostream>
using namespace std;

void foo (int* bar[]){

*(bar[0]) = 5;
}

int main(){
int* qux[10];

qux[0] = new int;
*(qux[0]) = 10;
foo(qux);

cout << *(qux[0]) << endl; // Prints 5
}

10 Structs and Classes

C++ has something called a struct. Think of it as a class with no methods, only public member variables.
You can refer to the variables using ’.’. If you hold a pointer to a struct, you can use the − > operator. For
instance:

#include <iostream>
using namespace std;

struct foo{
int a;

};

int main (){
foo b, *c; // b is a struct, c points to a struct

b.a = 6;
c = &b;
c->a = 7; // Remember c points to the struct b!

cout << b.a << endl; // prints 7.

return 0;
}

As for classes, the syntax is a little different, but many things are the same.
In Java, you have:

public class IntCell
{

public IntCell( )
{ this(0); }
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public IntCell( int initialValue )
{ storedValue = initialValue; }

public int getValue( )
{ return storedValue; }

public int setValue( int val )
{ storedValue = val; }

private int storedValue;
}

and in C++, you have:

class IntCell
{

public:

IntCell( int initialValue = 0)
{ storedValue = initialValue; }

int getValue( )
{ return storedValue; }

int setValue( int val )
{ storedValue = val; }

private:

int storedValue;
};

The end of a C++ class has a semicolon. DO NOT FORGET IT. The compilation errors will not tell you it
is missing. The compiler will give you strange errors you don’t understand.
In C++, there is no visibility specifier for the class.4

In C++, public and private are applied to sections inside the class.5. In Java, one constructor can call another.
You can’t do this in C++. The above syntax says that the default value is 0 if one is not passed. This must
be a fixed, compile time value.
There is also a slightly nicer way to declare classes in C++. This is exactly the same as the previous
definition, we have just split the interface and the implementation.

class IntCell
{

public:

IntCell( int initialValue );
int getValue( );
int setValue( int val );

private:

int storedValue;

4This only applies to a top-level class. See next section on inheritance.
5C++ also has protected, see the next section on inheritance

8



};

IntCell::IntCell (int initialValue = 0){
storedValue = initialValue;

}

int IntCell::getValue( ){
return storedValue;

}

int IntCell::setValue( int val )
{

storedValue = val;
}

11 Operator Overloading, Inheritance

Yep, C++ has both. Do you need them for 377? Nope.

12 Stack and Heap Memory Allocation

This is the second most difficult thing to get a handle on besides pointers.

12.1 Stack Memory

In a C++ function, local variables and parameters are allocated on the stack. The contents of the stack is
FREED (read destroyed) when the function ends. For instance in this example:

int foo (int a){
int b = 10;

return 0;
}

After foo ends you can’t access a or b anymore. This shouldn’t surprise you at all, Java works the same way.
However, now that we have pointers you can do something really bad:

#include <iostream>
using namespace std;

// BAD BAD BAD

int* foo (){
int b = 10;

return &b;
}

int main(){
int *a;

a = foo();
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cout << *a << endl; // Print out 10?

return 0;
}

In this example, we have a function foo that returns a pointer to a stack allocated variable b. However,
remember when foo returns, the memory location of b is freed. We try to dereference the pointer to b in
the cout statement. Dereferencing a stale pointer to freed memory, makes your program die a horrible nasty
death.6

12.2 Heap Memory

However, what if we want a variable to live on after the end of a function? There are two ways to do it.
First is to make it global. Then it will live for the entire lifetime of the program. This is poor programming
practice as well as not being dynamic. (How many objects do you need?)
Instead we allocate from the heap using new, just like in Java. However, new returns a pointer (a reference,
just like in Java!). For instance:

#include <iostream>
using namespace std;

// GOOD GOOD GOOD

int* foo (){
int *b;

b = new (int);

*b = 10;

return b;
}

int main(){

int *a;

a = foo();

cout << *a << endl; // Print out 10!

return 0;
}

Now b is allocated on the heap and lives forever! Great, but there is one slight problem in C++. Java knows
when you are no longer using an object and frees it from the heap7. C++ does not so you have to tell it when
you are done. For instance in Java this is legal:

bar qux;

6Actually if you compile this program and run it, it will probably work. However, in a more complex program it will NOT
7This is called garbage collection
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for (int i=0; i < 1000000; i++)
qux = new bar();

Well it is legal in C++ too, but you have what is called a memory leak. You are allocating objects and never
freeing them. In C++ you must do this:

bar *qux;

for (int i=0; i < 1000000; i++){
qux = new (bar);
delete (qux);

}

Easy, right? Ok, just remember that for EVERY new, you must do a delete exactly once. If you delete
memory that has already been deleted once, you are deleting a stale pointer. Again, your program will die
a horrible, nasty death. One strategy to diagnose this is to comment out your calls to delete and see if your
program still works (but sucks up memory). Another good idea is to set pointers to NULL after you delete
them and always check that the pointer is NOT NULL before calling delete.

13 Input, Output, Command Line Parameters

13.1 Input

Say you want to read something from a file.

#include <iostream>
#include <fstream>
using namespace std;

int main(){

int a;
ifstream input;

input.open("myfile");
while (input >> a);
input.close();
input.clear();

return 0;
}

This allows you to read a bunch of integers from myfile. You only need clear if you intend to use the input
object again. We will give you most of the code you need for input.

13.2 Output

Say you want to print two integers. Very easy:

#include <iostream>
using namespace std;

int main(){
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int a = 5, b = 6;

cout << a << " " << b << endl; // Prints 5 6

return 0;
}

The endl is an endofline character.

13.3 Command line parameters

Just follow the example:

#include <iostream>
using namespace std;

int main(int argc, char * argv[]){

int a;
ifstream input;

if (argc != 3){ // One for the program name and two parameters
cout << "Invalid usage" << endl;
return -1;

}

int a = atoi (argv[1]); // First parameter is a number
// atoi converts from characters to int

input.open(argv[2]); /// Second parameter is the name of a file
input.close();

return 0;
}

14 The Standard Template Library

As you know already, it is tough to program without good data structures. Fortunately, most C++ imple-
mentations have them builtin! They are called the Standard Template Library (STL).
The two that you may need for 377 are queues and maps. You should know what these are already. Using
the STL is pretty straightforward. Here is a simple example:

#include <iostream>
#include <queue>
using namespace std;

queue<int> myQueue;
int main(int argc, char * argv[]){

myQueue.push(10);
myQueue.push(11);

cout << myQueue.front() << endl; // 10
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myQueue.pop();

cout << myQueue.front() << endl; // 11
myQueue.pop();

cout << myQueue.size() << endl; // Zero
}

The type inside of the angle brackets says what the queue myQueue will hold. Push inserts a COPY of what
you pass it. Front gives you a reference to the object, unless you copy it. I will make this clearer in class.
Pop, pops it off the queue and discards it. Often you will have a queue or a map of pointers. Here is a more
complex example you should now understand:
#include <iostream>
#include <map>
using namespace std;

class IntCell
{

public:

IntCell( int initialValue );
int getValue( );
int setValue( int val );

private:

int storedValue;
};

IntCell::IntCell (int initialValue = 0){
storedValue = initialValue;

}

int IntCell::getValue( ){
return storedValue;

}

int IntCell::setValue( int val )
{

storedValue = val;
}

// In a map the first parameter is the key
map<int, IntCell *> myMap;

int main(int argc, char * argv[]){

IntCell *a;
int i, max = 100;

for (i = 0; i < max; i++){
a = new(IntCell);
a->setValue(max-i);
myMap[i] = a; // Inserts a copy of the pointer
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}

for (i = 0; i < max; i++){
a = myMap[i];
cout << a->getValue() << endl;
delete (a);
myMap[i] = NULL; // Good idea?

}
myMap[0]->setValue(0); // Quiz: can I do this?

}

Think about what the output from this should be. If you know, you are a C++ guru!8

15 Crashes, Array Bounds, Debugging

C++ programs can crash for a lot of reasons. You will run your program and it will print out some strange
message, such as “segfault” or “bus error”. This means you have done something wrong in your program.
The three most common errors are: accessing an array out of bounds, dereferencing a stale pointer, and
memory allocation errors (such as deleting a stale pointer).
There is a tool named gdb that can help you diagnose some of these problems. The TAs will show you how
to use it in office hours.

16 Misc

16.1 Assert

The assert function is a handy call in C++. If you assert something that is true, nothing will happen. If you
assert something that is false your program will exit on that line and tell you it wasn’t true.

int *ptr = NULL;

assert(ptr != NULL); // Peogram exits

16.2 Typedef

Typedef is just some way of defining one type as another.

typedef int* p_int;

p_int a; // a is pointer to an integer

16.3 Exceptions

Yes, C++ has exceptions kind of like Java. Do you need them in 377? Nope.

16.4 Comments

Same syntax as Java.
8Ok, maybe not a guru, but you can probably pass 377.
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16.5 #define

You can can globally replace a set of characters with another9.

#define MAX 100

int baz[MAX]; // baz is an array of 100 integers

16.6 static

The keyword static means something in Java classes. It means the same thing in C++ (with some differ-
ences). Don’t worry about using it in classes, you won’t need to in 377.
However, it also means several other things in C++. If you put static before a global variable or function,
it means it is only visible in this file. You will only be writing programs with one file, but you will be
including files the instructors wrote. To ensure there are no names that conflict, we ask that you declare all
your functions (except main) and global variables with static.
If you declare a variable inside a function to be static, it is just like a global variable, but only visible inside
the function. In other words it keeps its value between calls to that function.10

Here is an example of both:

static int b;

static void foo(int a){
static int x;

}

16.7 unsigned variables

There are other datatypes, such as “unsigned int”. It is a purely positive integer (ie. no twos-complement).
Don’t do this:

void foo(unsigned int a){
cout << a << endl;

}

int main(){

int a = -1;

foo(a);
}

Actually the compiler will stop you from doing this. You are trying to give it the wrong type.

16.8 typecasting

However, there is something you can do about it. You can change any type into any other type. As you can
tell this is more dangerous than running with scissors. For instance, this WILL compile:

9This is done before compilation by the preprocessor
10This is because static variables are allocated in the data segment, not the stack.
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void foo(unsigned int a){
cout << a << endl;

}

int main(){

int a = -1;

foo((unsigned int)a);
}

The int in parentheses says make this an unsigned int.
You can also do this:

int main(){

int *a;
float b;

a = (int *)&b; // Take the address of b and pretend it is a pointer to an int
}

Don’t.
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