
Programming Guidelines for Java
CS 1101

This handout discusses four techniques which help to make a program more intelligible:
descriptive identifiers, white space, indentation, and documentation. You must follow
the guidelines given here. There will be penalties for not doing so.

1 The Use of Descriptive Identifiers

The variables, constants, and methods in your programs must all be given names, or iden-
tifiers. Choosing names that suggest what the variable, constant, or method does helps a
reader of your code to understand how your program works. There are Java rules for identi-
fiers that must be followed in that identifiers that do not comply with them will be flagged
as errors and your code will not compile. There are also style guidelines for identifiers that
must be followed in that identifiers that do not comply with them will be flagged as errors
by the graders and points will be taken off. Here are the Java rules:

• The first character of an identifier must be a letter, an underscore (), or a dollar sign
($).

• The rest of the characters in the identifier can be a letter, digit, underscore, or dollar
sign. Note, in particular, that spaces are not allowed.

• Identifiers are case-sensitive. This means that square and Square are different iden-
tifiers.

• Identifiers cannot be the same as any of Java’s reserved words:

Abstract assert boolean break byte case catch char class

const continue default do double else enum extends false

final finally float for goto if implements import instanceof

int interface long native new null package private protected

public return short static strictfp super switch synchronized this

throw throws transient true try void volatile while

A widespread style, which you are required to use, does not use the dollar sign at all in
identifiers and does the following:

1. for variables and methods, use only letters and digits, separating words in the identifier
by capitalizing the first letter of each word, except for the first word,

2. for constants, use all upper case letters, separating words with an underscore,

3. for class names, use only letters and digits, separating words in the identifier by
capitalizing the first letter of each word, including the first word.

1

1.1 Variables and Constants

Here are some additional guidelines on creating identifiers. Noun phrases are good choices
for variables and constants that describe things. For example:

private FramedRect sign = new FramedRect(285, 60, 80, 80, canavs);

private Text clickingText = new Text("CLICKING", 295, 95, canvas);

private Line slash = new Line(302, 77, 348, 126, canvas);

private static final double SALES_TAX_RATE = 0.065;

private int numReservedCustomers;

private double wagePerHour;

private char reply;

(Note that these are all variables and assignments as they would appear if declared globally
(outside all methods). If they were declared locally (in a single method), you would not use
the private or static modifiers.

Note that you do not need to use named constants for values that are obvious and general,
e.g. dividing by 2 to calculate an average. You should name a constant (and use the name)
when it means something special, e.g. the sales tax rate above, or the dimensions of an
object (e.g. BOX WIDTH).

Boolean variables often represent conditions, and their names should reflect that, e.g.:

boolean done;

Identifiers such as x and y should only be used if the value has no significance other than
the fact that it is a real number, such as in a mathematical formula:

double y = a * x + b;

Identifiers such as i, j, and k are typically used to stand for arbitrary integer values,
especially those used as loop control variables.

1.2 Methods

A method that returns a boolean value can often be named by the yes/no question that it
answers, such as isWithinRange or wantsToPlay. Other times a method returns a non-
boolean value (e.g. a numerical value) and the name of the method should indicate what
that value is, as in greatestCommonDivisor or absValueDifference. Finally, a method
might not answer a question or return a value, but, instead, perform some job on its inputs.
A natural choice for naming this kind of method is a description of what it does, such as
playGame or runCalculator.

2

2 The Use of White Space

Use white space (blank spaces and lines) freely to make your code easier to read. Observe
the following rules:

• Don’t put more than one statement on a line.

• Put spaces between operands and operators of expressions.

• Put blank lines between groups of statements that perform well-defined tasks (e.g.
drawing some graphics that require you to create several graphical objects, doing
some calculations that are related to each other).

3 Indentation

Each line in the body of a method (such as the begin method or the onMousePress method,
is indented the same amount. Within a method, indentation is used to indicate what
statements belong in an if or else statement, or a while or for loop. I will provide details
in class when we talk about these constructs. Use the tab key to keep your indentation
consistent. In particular, be sure that blocks of code at the same level in your program are
indented the same amount. We will take points off for indentation that is not consistent or
that makes it difficult to follow what you are doing.

A related issue is the placement of curly braces that enclose a block of code. The opening
curly brace should be on the same line as the construct that starts that block (if, else,
while, or for) and the closing curly brace should be lined up with the if, else, while, or
for, e.g.

if (x < 20) {

x = y + z;

System.out.println(x);

}

4 Documentation

Documentation refers to comments placed in your program that explain what the program
is doing. We will take points off for insufficient documentation. For this course, there are
two kinds of documentation: summary documentation and in-line documentation.

4.1 Program Summary

The file containing your program should begin with a comment that includes the name and
number of the lab, your name, the date, and a summary description of what the program

3

does, including any assumptions that the program makes about how it is going to be used,
including particular cases that it can or cannot handle (particularly if there are cases that
might go against reasonable user expectations).

For example:

/*

Crosshairs

Sean Barker

1 October 2014

CS 1101B

This program allows the user to drag the center of two

crosshairs around a window with the mouse. When the

mouse enters the window, text appears that tells the

user what to do. When the user starts dragging the

mouse in the window, the crosshairs appear and the

crosspoint follows the mouse arrow. Note that the

program is written to that the window can be resized.

When the user resizes the window, and enters the window

the text appears again and the user can drag the mouse

to make the crosshairs move as they did in the original

window.

*/

Initially, when your programs are quite simple, the program description can be quite brief.
As your programs increase in complexity, the length of the summary will increase as well.

4.2 In-line Documentation

Comments placed between lines or blocks of code in a program are called in-line comments.
Often it is helpful to use comments to explain blocks of code in your program. For example:

// create a new random color

int redLevel = randomColorElement.nextValue();

int greenLevel = randomColorElement.nextValue();

int blueLevel = randomColorElement.nextValue();

circleColor = new Color(redLevel, greenLevel, blueLevel);

In-line comments are generally necessary in all but the simplest programs, but don’t go
overboard! Not every line of code needs a comment.

4

4.3 Method Summaries

Methods should sometimes have summaries, similar to program summaries, just above
their header statements. For predefined methods, such as begin and onMouseDrag, where
the inputs and outputs are already specified, a summary is not necessary if the method
has relatively few lines of code with an in-line comment or two describing what the code
does. If the predefined method contains a lot of code, in-line comments should be used to
document what it does, and a short summary just above the method header should be used
to give a high-level explanation of what the method does.

For methods that you write, you should always have a summary above the header that
includes a description of the inputs to the method, what the method does, and the return
value (if any) of the method. It should also include any assumptions that the method makes
about the input. For example:

// This method accepts as input a double value and, after

// checking to ensure that the value is positive (> 0), it

// calculates and returns the log base 2 of the input;

// otherwise it prints out an error message and returns -1.

//

public double logBase2 (double n) {

double logBase2Value = -1;

if (n > 0.0)

logBase2Value = Math.log(n) / Math.log(2);

else

System.out.println("Error: Cannot compute the log of zero!");

return logBase2Value;

}

5

