
Lab 2: Infinite Monkey Theorem
CSCI 2101 – Fall 2021

Due (Section A): Wednesday, September 29, 11:59 pm
Due (Section B): Thursday, September 30, 11:59 pm
Collaboration Policy: Level 1 (review full policy for details)
Group Policy: Pair-optional (you may work in a group of 2 if you wish)

The infinite monkey theorem states that given enough time, a monkey typing randomly on a
typewriter will eventually produce the complete works of William Shakespeare (or any other literary
work, for that matter). Of course, the length of time one would have to wait for that to occur is
rather long; e.g., the universe would probably end before it actually happened. Although we don’t
have time to test the theorem in its original form, we will test a modified theorem involving a more
clever typewriter monkey. This particular monkey has been browsing books by well-known authors
and remembers how often certain letter sequences appear. Rather than typing purely randomly,
the monkey tries to mimic great authors by repeating patterns it has seen before (though it does
not understand the actual meaning of anything that it types). The monkey may still not produce
Hamlet itself, but might at least be able to produce something passing as Shakespearean.

More practically, this lab will give you experience writing programs using multiple classes,
working with maps (aka dictionaries), and using generics in Java. Note that while we will be using
maps this week, we won’t actually talk about how maps are implemented until later in the semester.
You should read through the entire handout (particularly Sections 1, 2, and 3) before proceeding
with the lab. Remember to plan your classes and methods before beginning to code!

Warning! This lab is significantly more complex from a design and object-oriented perspective
than Lab 1. While the code needed is actually not as extensive as one might guess from the writeup,
this lab is not to be underestimated. Start early and work steadily!

1 (Pseudo)-Random Writing

Consider the following three excerpts of text:

Call me Ishmael. Some years ago–never mind how long precisely–having repeatedly
smelt the spleen respectfully, not to say reverentially, of a bad cold in his grego pockets,
and throwing grim about with his tomahawk from the bowsprit?

Call me Ishmael. Some years ago–never mind how long precisely–having little or no
money in my purse, and nothing particular to interest me on shore, I thought I would
sail about a little and see the watery part of the world.

Call me Ishmael, said I to myself. We hast seen that the lesser man is far more prevalent
than winds from the fishery.

The second excerpt is the first sentence of Herman Melville’s Moby Dick. The other two ex-
cerpts were generated “in Melville’s style” using a simple algorithm1 developed by Claude Shannon
in 1948. In this lab, you will implement Shannon’s algorithm, allowing you to programmatically
generate text in the style of real authors!

1Claude Shannon, “A mathematical theory of communication”, Bell System Technical Journal, 1948.

1

Character Distributions. The algorithm is based on letter probability distributions. Imagine
taking the book Tom Sawyer and determining the probability with which each character occurs
(we’ll call this a level-0 analysis). You’d probably find that spaces are the most common, that the
character ‘e’ is fairly common, and that the character ‘q’ is rather uncommon. After completing
this analysis, you’d be able to produce random Tom Sawyer text based on character probabilities
by just sampling one character at a time. It wouldn’t have much in common with the real thing,
but at least the characters would tend to occur in the proper proportion. In fact, here’s an example
of what you might produce:

Level 0: rla bsht eS ststofo hhfosdsdewno oe wee h .mr ae irii ela iad o r te u t mnyto
onmalysnce, ifu en c fDwn oee iteo

Now imagine doing a slightly more sophisticated analysis by determining the probability with
which each character follows every other character – we’ll call this a level-1 analysis. You would
probably discover that ‘h’ follows ‘t’ more frequently than ‘x’ does, and that a space follows ‘.’ more
frequently than ‘,’ does. For example, if you are analyzing the text “the theater is their thing”
and considering the letter ‘h’, then ‘e’ appears after ‘h’ three times, ‘i’ appears after ‘h’ one time,
and no other letters ever appear after ‘h.’ So the probability that ‘e’ follows ‘h’ is 0.75 (75%); the
probability that ‘i’ follows ‘h’ is 0.25 (25%); the probability that any other letter follows ‘h’ is 0.

Using a level-1 analysis, you could produce some randomly generated Tom Sawyer text by
picking some character to begin with and then repeatedly choosing the next character based on the
previous one and the probabilities revealed by the original text analysis. Here’s an example:

Level 1: “Shand tucthiney m?” le ollds mind Theybooure He, he s whit Pereg lenigabo
Jodind alllld ashanthe ainofevids tre lin–p asto oun theanthadomoere

Now imagine doing a level-k analysis by determining the probability with which each character
follows every possible sequence of characters of length k. For example, a level-5 analysis of Tom
Sawyer would reveal that ‘r’ follows “Sawye” more frequently than any other character. After
such an analysis, you’d be able to produce random Tom Sawyer text by always choosing the next
character based on the previous k characters and the probabilities revealed by the analysis.

At somewhat higher levels of analysis (e.g., levels 5–7), the randomly generated text begins
to take on many of the characteristics of the source text. It probably won’t make complete sense,
but you’ll be able to tell that it was derived from Tom Sawyer as opposed to, say, Hamlet or Moby
Dick. Here are some more Tom Sawyer examples:

Level 2: “Yess been.” for gothin, Tome oso; ing, in to weliss of an’te cle – armit.
Papper a comeasione, and smomenty, fropeck hinticer, sid, a was Tom, be
suck tied. He sis tred a youck to themen

Level 4: en themself, Mr. Welshman, but him awoke, the balmy shore. I’ll give him
that he couple overy because in the slated snufflindeed structure’s kind was
rath. She said that the wound the door a fever eyes that WITH him.

2

Level 6: people had eaten, leaving. Come – didn’t stand it better judgment; His
hands and bury it again, tramped herself! She’d never would be. He found
her spite of anything the one was a prime feature sunset, and hit upon that
of the forever.

Level 8: look-a-here – I told you before, Joe. I’ve heard a pin drop. The stillness was
complete, how- ever, this is awful crime, beyond the village was sufficient.
He would be a good enough to get that night, Tom and Becky.

Level 10: you understanding that they don’t come around in the cave should get the
word “beauteous” was over-fondled, and that together” and decided that he
might as we used to do – it’s nobby fun. I’ll learn you.”

To summarize the algorithm: given some input text (e.g., the text of Tom Sawyer) and the
level k of the desired analysis, we first process the input text and store the probabilities of every
possible character that follows each k-length sequence encountered in the input text. Following
this analysis, we can generate random text as follows: first, pick the first k letters from the input
text to bootstrap the random text. Then, repeatedly choose the next character by looking at the
preceding k characters in the random text and selecting randomly given the probability information
from the input text analysis. We can continue to select random characters in this way to generate
as much output text as desired.

2 Program Interface

Your program should have a simple, terminal-based interface. The program should first prompt
the user to enter the name of an input file to read:

Enter file to read:

Once the name of the input file has been entered (e.g., hamlet.txt), the desired value of k
should be prompted and read:

Enter desired value of k:

Your program should do some basic error checking on the inputs. In particular, if the entered
file can’t be read, or the value of k is invalid (less than 1), your program should print an error
message and then exit. As in last week’s lab, you can disregard the case where a non-numeric value
is entered for k.

Once the filename and k have been read, the program should print out 500 characters of
randomly-generated text following the probabilities of the input text (you can do more, but 500
should be enough to be confident that things are working). The first k characters of the output
text should be the same as the first k characters of the input text – in other words, the first k input
characters will be the starting sequence used to generate the first random character.

Important note: While the above describes the interface of the finished program, you should
not use this complete interface during development. Instead, you should implement incrementally
and start with something simpler, as detailed in Section 4.

3

3 Program Design

As always, you should spend some time sketching the design (preferably on paper) before actually
starting to code. A good way to mentally approach the problem is to think in terms of the two
stages of the program: first, processing the input text to calculate the probability information (the
first stage), and second, using that probability information to generate random text (the second
stage). When thinking about your operations, it may be helpful to explicitly think about whether
they will be needed in the first stage or the second stage. At a high level, your program will need
to repeatedly perform the following two operations:

1. Given a string of k characters and the following (k+ 1) character from the input text, update
the probabilities in your probability table. This operation will be used when reading the text
input and building the table (i.e., the first stage).

2. Given a string of k characters and using the probabilities previously computed and stored in
the table, select the next (i.e., k+1) character to follow in the generated text. This operation
will be used when generating the output text (i.e., the second stage).

Since both operations rely on looking up probabilities based on particular character sequences
(i.e., mapping keys to values), your structure will be built around Map objects (aka dictionaries).
You will need to develop two primary classes, as well as a third that just contains your main method.

The first class, which we will call a FrequencyMap, should store the frequency with which
various characters follow a specific length-k character sequence (where each FrequencyMap instance
corresponds to a particular sequence). For example, in a level-2 analysis, the FrequencyMap for the
sequence “Sa” will probably show that “w” is a fairly common subsequent character, while “x” is
perhaps a less common subsequent character. The primary piece of state within a FrequencyMap

should be a (regular) Map in which characters are mapped to the number of times that character
appears following the FrequencyMap’s length-k sequence. You will need to decide what methods a
FrequencyMap needs to support and any other instance variables that might be necessary.

Importantly, remember that a FrequencyMap stores the frequencies of characters that follow a
specific k-length sequence. Since there will be lots of different k-length sequences in the input
text, this means that you will be creating lots of different FrequencyMap objects! The multiple
FrequencyMap objects will be contained in and managed by the second class, as described below.

The second class, which we will call a SequenceTable, should store the FrequencyMap for
each sequence that has been processed. Again, the best way to implement this structure is using a
Map. You will need to think about what the keys and values in this map represent – remembering
that the SequenceTable is going to contain all of your FrequencyMap objects. You will need to
gradually build up the SequenceTable as you read the input text. Afterwards, it should allow you
to actually generate random text following the probabilities stored in the FrequencyMap objects.

Since a single SequenceTable contains all the FrequencyMap objects, note that your program
will only need to create a single SequenceTable object. This object will then serve as the “primary”
data structure for the program (though it internally relies on all of the FrequencyMap objects).

4

One particular complication to note is any situation in which you generate a random k-length
sequence that has no known following characters. In particular, this situation can arise if your input
ends in a k-length sequence that appears nowhere else in the input. In this case, if you randomly
generate this particular k-length sequence, the program will have no probability information to
decide what character should follow it. A straightforward fix to this problem is to prepend (i.e.,
add to the beginning) the final k-length sequence of the input to itself before processing. That way,
there will never be a unique k-length sequence appearing at the end of the input.

Lastly, you will need to write a main method that actually uses the SequenceTable class to
generate random text. Your main method should be written in a separate class called WordGen,
which contains only the main method and possibly a few helper methods. Your main method will
need to read the input text, build the SequenceTable by repeatedly handing it character sequences,
and then generate and print a randomly-generated string based on the probabilities of the input
text (by repeatedly asking the SequenceTable to give you new random characters).

To briefly recap, you will need to write three separate classes: FrequencyMap, SequenceTable,
and WordGen. The first two will be regular classes, while the last will just be a container for your
main method. Specific implementation tips are provided below.

4 Implementation Tips

You should build your program in stages that you have planned out ahead of time. A well-
designed program is significantly easier to write, whereas if you neglect planning and just start to
code, you will likely end up with a messy, over-complicated program. Relatedly, it’s a good idea to
simplify the problem at first while you develop, then generalize once the simpler version is working.
Here are two specific suggestions to simplify the problem while you are just getting started:

• While the full program interface will read input from a specified file, don’t bother trying to
read from a file at first. Instead, just hardcode a specific String value into your program to
use as a fixed input during development (e.g., “the theater is their thing”). When set up this
way, your program doesn’t need to prompt for a filename input at all. It will be simple to go
back when everything is working and change the interface to prompt for a filename.

• Similarly, rather than handling an arbitrary value of k to start, just fix a value of k (e.g., 2)
and get the program working with that k. In this case, your program also doesn’t need to
prompt for a value of k. However, make sure that the design of your classes is general enough
to be able to handle settings of k other than your initial hardcoded value.

Once your program is working for a hardcoded input string and a fixed k, try varying one and
then both values to make sure that your program works for multiple different inputs. Afterwards,
you can implement the full interface described in Section 2, which will allow a user to specify any
input file and desired setting of k. If you have designed your classes well, moving to a general input
and k should require few changes beyond updating your main method to provide the full interface.

Some other useful implementation tips (in no particular order) are provided below:

5

• If you designed your classes well, the main method in WordGen should only make use of
the SequenceTable class (but not the FrequencyMap class). The FrequencyMap class only
be used from within the SequenceTable class. This is an example of encapsulation, which
refers to hiding internal implementation details from external users. In this case, the details of
FrequencyMap should be hidden away inside the SequenceTable class, meaning that WordGen
doesn’t need to worry about the FrequencyMap class or even know that it exists.

• As in Lab 1, use the Scanner class to handle user input. You can read an entire line of text
entered by the user using the nextLine method.

• When using generics (i.e., specifying the types that collections such as Maps are going to work
with), remember that you have to specify reference types, and cannot use primitive types
like int, char, etc. However, since you might reasonably want to store primitive types in
a Map or List, Java provides a regular class for each of the primitive types, named by the
unabbreviated primitive type. For example, there is a class Integer corresponding to an int,
a class Character corresponding to a char, and so forth. You can use these class names when
specifying your generic types. Luckily, Java will take care of converting between the primitive
type and its reference type automatically (in a process called autoboxing), so you can use the
primitive types as you normally would when actually working with your Map objects. For our
purposes, the only time you need to use the corresponding reference classes is when you’re
specifying generic types.

• Reading the contents of a file into a String (or doing much of anything involving files) is
unfortunately more complex in Java than in Python. While there are many ways to read a
file in Java, below is a relatively compact, self-contained method that you can use:

/**

* Read the contents of a file into a string. If the file does not

* exist or cannot not be read for any reason, returns null.

*

* @param filename The name of the file to read.

* @return The contents of the file as a string, or null.

*/

private static String readFileAsString(String filename) {

try {

return Files.readString(Paths.get(filename));

} catch (IOException e) {

return null;

}

}

Feel free to take and use this method verbatim in your program. To do so, you will also need
to add a few extra imports:

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

6

• Don’t forget to apply the fix described in the Program Design section for the situation in
which a unique k-length sequence appears at the end of the input. You should alter the input
prior to building the SequenceTable. A good way to do this alteration is to add the final
k-length sequence, plus a space, to the beginning of the original input. For example, suppose
that the original input is “the theater is their thing” and k = 3. The final k-length sequence
“ing” appears only at at the end of the input, and thus there is no information to decide what
should follow it during random text generation. To fix this problem, we can change the input
to be “ing the theater is their thing”, which no longer has this problem.

• A simple but useful debugging approach is to print out your objects to inspect their state
(such as the frequency maps). To get more useful output from printing your objects, make
sure to define a toString method in your classes. These methods don’t need to be complex –
they might even just call the existing toString method of the Map instance variable contained
in the class, which will show you the key-value pairs in the internal map.

• If you finish the program early and want to go further, you can change your program to
work at the word level instead of the character level (to be clear, this is strictly optional).
Only attempt this after you get the required work finished (and make a backup copy of the
character-level analysis). Does this change make the results better/worse in any way?

5 Sample Texts

A collection of sample input files can be downloaded from Blackboard, which you can use as test
inputs to your program. The file whosonfirst.txt is good as an initial test once you’re ready to
begin processing actual files (after initial development using a hardcoded string). The other sample
input files are significantly larger and not quite as predictable. If you want to try something else, the
Gutenberg Project (https://www.gutenberg.org/) has thousands of books available for download
as plain text files. You can also try files that aren’t regular English text; e.g., the code.txt sample
input file is the source code for a Java class, which should result in code-like output.

Note that when specifying an input filename to your program, typing a name like “hamlet.txt”
will cause your program to look for the file called hamlet.txt in the same directory as your project.
If the desired input file is contained in a different directory, e.g., a directory named text-files that
is contained in the project directory, then you must specify the file like “text-files/hamlet.txt”
so that Java can locate it.

6 Evaluation

Your completed program will be evaluated along the usual three criteria (described in more de-
tail in the Lab 1 writeup): correctness, design, and style. In self-screening your program before
submission, your primary reference for correctness-related issues should be your lab writeup (i.e.,
this document). For design and style issues, your primary references should be the Coding Design
& Style Guide, your own good sense, and any specific guidance provided by your instructor (e.g.,
feedback provided on past labs). Also make sure that your name (and the name of your partner, if
applicable) is included in all of your Java files, and that your project directory is properly named
(see below for naming instructions).

7

Group Evaluations

For groups, only one group member should submit the final program (but make sure that both
names are indicated). In addition to your group’s single submission, each group member must
individually submit a group report to your instructor over Slack. Your group report
(which will not be shared with your partner) should summarize your contributions to the lab as
well as those of your partner. Your report could be as simple as “we both worked on the entirety of
the lab together in front of one machine” if that is the case. Remember that the general expectation
is that all group members participate fully in most or all parts of the lab (i.e., not “divide up the
work”). Your group report does not need to be long (a few lines is fine), but must be received for
your lab to be considered submitted. Submit your group reports over Slack; do not include them
in your project submission to Blackboard. Group submissions will normally receive a single grade,
but we reserve the right to adjust individual grades up or down in the event of clear inequities.

7 Submitting Your Program

Once your program is finished, you should follow the following steps to submit:

1. Save your program and quit your IDE (e.g., BlueJ or Eclipse).

2. Rename your project folder (which is the folder containing your .java files and
any associated files) so that it is named username-lab2 (if working individually) or
username1-username2-lab2 (if working in a group, such as sbowdoin-jbowdoin-lab2).
Do not include anything else in the folder name!

3. Create a single, compressed .zip archive of your project folder. On a Mac, right-click (or, if
you have no right mouse button, control-click) on your project folder and select “Compress
your-folder-name” from the menu that appears. On a Windows machine, right-click on the
folder, select “Send To,” and then select “Compressed (zipped) Folder.” In either case, you
should now have a .zip file that contains your project, named something like jdoe-lab2.zip
(with your actual username(s)).

4. Open a web browser and go to the course’s Blackboard page, then browse to Lab Submissions.
Click on Lab 2 and then Browse Local Files to locate and attach your .zip archive. Don’t
write any comments in the comment section, as your instructor will not see them. Once
you’ve attached your .zip archive, click on Submit to complete your submission.

5. If working in a group, submit your group reports to your instructor by Slack.

After submitting your lab, remember to save a copy of your project folder somewhere other
than on the desktop of the machine you are working on (if you’re on a lab machine). If you just
leave it on the desktop, it will only be available on that machine – if you log into any other machine
on campus, it will not be there. You can also store your projects in Dropbox (or any similar
service) or in your folder on the microwave server (see the Lab 1 writeup for details on connecting
to microwave).

8

