
Lab 1: Silver Dollar Game1

CSCI 2101 – Fall 2021

Due (Section A): Monday, September 20, 11:59 pm
Due (Section B): Tuesday, September 21, 11:59 pm
Collaboration Policy: Level 1 (review full policy for details)
Group Policy: Individual

This lab will give you experience writing an object-oriented program in Java as well as working
with one of the simplest types of data structure (an array). To do so, you will write a program
allowing you to play a simple two-player game, the Silver Dollar Game. The rules of the game are
described below, followed by some suggestions for how to go about designing and implementing
your program.

1 Game Rules

The Silver Dollar Game is played between two players. An arbitrarily long strip of paper is marked
off into squares, as pictured below:

The game begins by placing silver dollars in a few of the squares. Each square holds at most
one coin. Interesting games begin with some pairs of coins separated by one or more empty squares.
For example:

From the starting board configuration, players take turns moving a single coin, constrained by
the following rules:

1. Coins move only to the left.

2. No coin may pass (skip over) another.

3. No square may hold more than one coin.

The game ends once the n coins occupy the leftmost n squares of the board (that is, no further
moves are possible). The final player to move is the winner.

1Adapted from a lab provided with Java Structures, D. Bailey

1



2 Program Specification

Your program will facilitate playing the Silver Dollar Game using a simple text-based interface, the
operation of which is detailed here. At the beginning of the game, the user should first be asked to
enter the number of coins:

Enter the number of coins:

The user should then enter an integer greater than 0 to specify the number of coins (you can
assume that the user enters a valid number). The game board containing the desired number of
coins is then randomly generated by placing each coin a random number of squares away from the
coin to its left (or the left edge of the strip, for the first coin), chosen each time from 1 to 6. Note
that this setup procedure means that the starting strip contains at most k × 6 squares for k coins.

Following setup, gameplay begins, starting with Player 1. At the beginning of each move, a
textual representation of the board should be printed to the terminal. The board representation
should consist of the squares of the strip, separated by spaces, in which each square is denoted by
either an underscore (for unoccupied squares) or the number of the coin occupying that square.
Coins should be numbered sequentially starting from zero, where coin 0 is the left-most coin. For
example, below is a 14-square strip containing three coins (numbered 0, 1, and 2):

Following the printing of the board, the active player (Player 1 or Player 2) should then be
prompted to enter a move. For example:

Player 1: Enter your move:

The player should then specify a move by entering two integers (separated by a space), where
the first integer is the number of the coin to move and the second integer is the number of squares
to move that coin. For example, entering “3 2” says to move coin 3 (the fourth coin) two squares
to the left.

Note that many integer pairs may correspond to illegal moves given the current board config-
uration. For example, the move “5 3” isn’t valid if there is no coin 5, or if coin 5 exists but can’t
be moved left 3 squares without falling off the edge of the board or violating one of the game rules.
If any illegal move is entered, an error message should be printed and the current player should
again be prompted for a move. For example:

Player 2: Enter your move: 5 3

Illegal move! Try again.

Player 2: Enter your move:

Once the game is won (i.e., no further moves are possible), the ending board configuration
should be printed, followed by a victory message for the appropriate player, e.g.:

Player 1 wins!

You can assume that all user input throughout the game will be in the expected format (i.e.,
one integer for specifying the number of coins and two integer for each move). Gracefully handling
illegally-formatted user input (such as if a user entered “abc”) would be nice, but would require
using exceptions, which you may remember from Python but we have yet to cover in Java.

2



3 Program Design

You should write your program in two Java classes: a class called CoinStrip representing the game
board, and a class called PlayGame that actually runs the game. The PlayGame class will just be
a wrapper for your main method, while the bulk of your code will go in the CoinStrip class.

Before you write any code, you should think about the design of your program. For programs
of any significant complexity, tackling design before beginning to implement is crucial. Start with
a preliminary design of the CoinStrip class. The design has two main parts: 1) the data structure
used to represent the game state, and 2) a set of operations on the game state that are needed
to play the game. A game state indicates where all the coins are, but there are multiple ways to
represent this information (discussed further in the implementation section below). However you
choose to represent the game state will correspond to the set of instance variables defined in the
CoinStrip class. Operations might include those that answer questions (e.g., is a move legal? Is
the game over? How many coins are there?) and those that perform actions (e.g., move a coin,
print the board) – note that these examples are just possibilities, and not necessarily sufficient.
Each operation you choose to support will correspond to a method of the CoinStrip class.

A good way to design the core data structure is to consider how the operations you will need
would be handled with that design. Depending on the design of the data structure, certain opera-
tions may be easier or harder to implement. In designing the operations, consider the parameters
they will take and their return values (if applicable). You probably won’t be able to see all of the
implications of your design choices until you’ve done some implementation work (i.e., written some
code). Similarly, you may find once you start implementing that a previous design decision should
be revised; don’t be afraid to change or even completely abandon a previous design if you find that
the implementation is becoming awkward or excessively complex. Design and implementation are
a back-and-forth process rather than a straight-line sequence.

Your PlayGame class will simply be a container for your main method, and should not need
any other methods. The main method should create a CoinStrip object representing the board
and then begin prompting the players to make their moves, following the interface described in the
previous section. In other words, the public methods of your CoinStrip class will be called from
within the main method of PlayGame, which is where the game simulation is controlled. The core
game simulation in PlayGame should essentially be a loop in which one loop iteration corresponds
to one move of the game (possibly including illegal moves, depending on your design). Note that
all output produced by the program (i.e., all calls to System.out.print or System.out.println)
should be within PlayGame rather than CoinStrip. While methods of CoinStrip might produce
and return String objects, the actual printing of such strings should only happen in PlayGame.

4 Implementation Tips

You have significant freedom in deciding how to implement your program (provided that it follows
the game rules and program specification given above), but this section contains suggestions for
how to approach your implementation. First, read the Coding Design & Style Guide, which
is available at the URL below. This guide provides a summary of important aspects of design and
style that you should adhere to throughout this course and beyond. Pay particular attention to
the advice on modularity, since these types of decisions are more difficult to correct later on.

https://web.bowdoin.edu/~sbarker/teaching/courses/ds/21fall/coding.php

3



You should build your program incrementally, compiling and testing as you go. Don’t blindly
try to write the entire program before testing anything! An incremental approach will both make
your debugging more efficient as well as help in producing a modular program design. A good
general approach is to write one method, test it to make sure it works as intended, then move onto
another method. Aim for small, compact methods that accomplish specific jobs. In order to test
your methods, feel free to write snippets of test code in PlayGame, even if you will ultimately delete
this test code once the program is working.

Some more specific pieces of implementation advice are given below:

• The simplest data structure to store the game board is an array. You can also use a fancier
data structure like an ArrayList in roughly the same way (if you are familiar with these from
previous Java experience), but a basic array should be fine for now.

• The most important question to ask is what the elements of the game board array actually
represent. Your first inclination may be to have each array element represent a square of the
board (similar to how the board is drawn visually). However, consider the following: in order
to check a particular move (e.g., move coin N to the left K squares), you need to know both
the location of coin N as well as the location of the coin to its left (i.e., coin N − 1). Using
the board representation just mentioned makes performing these checks nontrivial. Think
carefully about whether there is a better way to represent the board (i.e., rather than array
elements representing squares of the board) that would make these checks easier to implement.

• Normally, the design of your methods (i.e., the interface of the CoinStrip class, as used by
the PlayGame class) would be fully left up to you. However, since this is your first program,
two specific methods are suggested: one that checks if a given move is valid (i.e., whether it
is a legal next move) and another that actually performs a given move. You will still need to
decide what parameters these methods will need (e.g., how a move is specified when you call
the method) as well as what, if anything, they will return. Note that you will probably want
to add other methods in addition to these suggested two.

• Proper use of the static keyword is often a source of confusion for beginners. For this lab,
we’ll keep things easy for you – the only places you should use static in this lab are (1)
your main method declaration, and (2) the declarations of any constants you use. All other
methods (besides main) should not be marked static, and none of your instance variables
should be marked static.

• Use the built-in Scanner class to handle reading user input, as demonstrated in class. Re-
member that you will need to include java.util.Scanner in order to use the Scanner class.

• Use the built-in Random class to generate the initial board configuration (you’ll need to include
java.util.Random). Remember that a Random object is a random number generator, not a
random number itself. Random integers can be generated by calling the nextInt method on
the generator object.

• One of the most important functions of your program is generating the textual board rep-
resentation to print each round. This representation should be returned by the toString

method of the CoinStrip class.

4



• If you’re looking for some extra practice or a bit of a challenge, you can try changing toString

to return a fancier representation of the board, such as the one below:

While you are not required to produce a nicer representation like this one, it’s a good pro-
gramming exercise to do so!

• A variant of the Silver Dollar Game is called Welter’s Game, in which coins are allowed to
pass each other. While this is only a slight rule change (and not one you are required to
implement), think about the effect it would have on your program. You might be surprised
at how significant this change would be from an implementation standpoint!

5 Evaluation

Your completed program (and all future programs in this course) will be evaluated along three
general criteria:

1. Correctness: Does the program function as intended? For example, does the interface fully
match the program specification, and does gameplay correctly follow the rules of the game?
If you have any questions about what the “correct” behavior should be, ask your instructor
(but chances are that the answer is already in this writeup!).

2. Design: Is the program well-designed? Are the choices of data structures sound? Is common
functionality extracted into methods to avoid duplication? Are methods specific and appro-
priately modular? While this is far from an exhaustive list, these kinds of design questions
are of critical importance, even in the context of a fully correct program.

3. Style: Is the code properly and consistently indented? Are variables descriptively and ap-
propriately named? Are constants used when appropriate? Are classes and methods appro-
priately documented? These kinds of questions do not affect program correctness but greatly
affect how readable and editable the program is.

In self-screening your program before submission, your primary reference for correctness-related
issues should be your lab writeup (i.e., this document). For design and style issues, your primary
references should be the Coding Design & Style Guide (read it again!), your own good sense, and
any specific guidance provided by your instructor (e.g., feedback provided on past labs).

Lastly, make sure that your name is included in the CoinStrip and PlayGame classes,
and make sure that your project directory is properly named as described in the next
section. Points may be deducted if these guidelines are not followed!

5



6 Submitting Your Program

Once your program is finished, you should follow the following steps to submit:

1. Save your program and quit your IDE (e.g., BlueJ or Eclipse).

2. Rename your project folder (which is the folder containing your .java files and
possibly a few other files as well) so that it is named username-lab1, where username

is replaced by your Bowdoin username. For example, if your username is jdoe,
you should rename your folder jdoe-lab1. Do not include anything else in the
folder name!

3. Create a single, compressed .zip archive of your project folder. On a Mac, right-click (or, if
you have no right mouse button, control-click) on your project folder and select “Compress
your-folder-name” from the menu that appears. On a Windows machine, right-click on the
folder, select “Send To,” and then select “Compressed (zipped) Folder.” In either case, you
should now have a .zip file that contains your project, named something like jdoe-lab1.zip
(with your actual username).

4. Open a web browser and go to the course’s Blackboard page, then browse to Lab Submissions.
Click on Lab 1 and then Browse Local Files to locate and attach your .zip archive. Don’t
write any comments in the comment section, as your instructor will not see them. Once
you’ve attached your .zip archive, click on Submit to complete your submission.

After submitting your lab, remember to save a copy of your project folder somewhere other
than on the desktop of the machine you are working on (if you’re on a lab machine). If you just
leave it on the desktop, it will only be available on that machine (and not available if you log into
any other machine on campus). Two good options to keep your lab files available on any machine
are Dropbox (or any similar service) or in your folder on the Bowdoin microwave server (see below).

Connecting to the microwave server

All students have storage space available on the microwave file server, which you can use to store
your labs. The benefit of using this server is that you can access your microwave folder from any
machine on campus (not just the specific lab machine on which you were last working).

To connect to microwave on any lab Mac, click on the Desktop, then select “Connect to
Server” under the Go menu (or just command-K). In the window that appears, type the following
(substituting your actual username for the word username):

smb://microwave.bowdoin.edu/home/username

Click Connect and enter your Bowdoin password when prompted. A folder should then appear
on the desktop named with your username. This is your microwave folder, in which you can store
your labs when you are finished with them (or leaving but returning to work later). However, you
should not work directly on files on microwave. While you are actively writing your program, you
should copy your project folder to a “local” area first, such as the desktop. Once you are finished
working, you can copy your files back to microwave.

6


