
Lab 8: Lexicon, Helicon, Lexical
CSCI 2101 – Fall 2018

Due: Tuesday, November 20, 11:59 pm
Collaboration Policy: Level 1
Group Policy: Pair-optional

Virtually all modern word processors contain a feature to check the spelling of words in docu-
ments. More advanced word processors also provide suggested corrections for misspelled words. In
this lab, you will be undertaking the task of implementing such a spelling corrector, which will also
have some other nifty features (such as performing pattern matching on text). To do so, you will
build a recursive tree structure that is highly efficient at working with text prefixes, and augment
it with various useful capabilities.

This lab will rigorously exercise your skills with recursion, trees, and layered abstraction in
program design. This is probably the most challenging lab we have done all term – start early and
work steadily!

1 Lexicon

A lexicon is defined as the vocabulary of a person, language, or branch of knowledge. More generally,
it can be understood like a regular dictionary (i.e., a list of words), except that a lexicon contains
only the words themselves (and not their definitions as well).

You will be writing a class that implements an interface for a Lexicon object. The complete
Lexicon interface is provided to you, and its methods are sketched below:

public interface Lexicon extends Iterable<String> {

boolean addWord(String word);

boolean removeWord(String word);

boolean containsWord(String word);

boolean containsPrefix(String prefix);

int addWordsFromFile(String filename);

int numWords();

Iterator<String> iterator();

Set<String> suggestCorrections(String target, int maxDistance);

Set<String> matchRegex(String pattern);

}

Most of these methods are self-explanatory and intuitive. For more details, refer to the
Lexicon.java interface file provided in the starter files, which contains complete Javadoc for all
methods in the interface. Don’t worry too much about the final two methods for now (that is,
suggestCorrections and matchRegex) – these will be implemented last, after the rest of the
lexicon is working.

While the behavior of the lexicon is fairly straightforward, implementing it efficiently will
require the use of a new type of tree structure that we have not seen before. This structure is
described below.
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2 Tries

There are several different data structures you could potentially use to implement a lexicon – a
sorted array, a linked list, a binary search tree, and many others. Each of these options offers
tradeoffs between the speed of looking up a word or prefix, the amount of memory required to store
the data structure, the ease of writing and debugging the code, the performance of adding/removing,
and so on. The structure that we will use is a special kind of tree called a trie (pronounced “try”),
designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. Each node in a trie represents a single
letter. A path through the trie traces out a sequence of letters that represents a prefix or word in
the lexicon. Note that the root of the trie is a special case, as it is ‘blank’ and does not represent
a letter.

Instead of just two children as in a binary tree, each trie node potentially has 26 children
(one for each letter of the alphabet, ignoring case and non-letter characters). Whereas searching a
binary search tree eliminates half the words with a left or right turn (we will discuss binary search
trees in class shortly), a search in a trie follows the child reference for the next letter, which narrows
the search to just words starting with that letter. For example, from the root node, any words
that begin with “n” can be found by following the reference to the “n” child node. From there,
following “o” leads to just those words that begin with “no” and so on, recursively. If two words
have the same prefix, they share that initial part of their paths. This property can save significant
space since there are typically many shared prefixes among words.

Clearly, leaf notes in a trie represent complete words (the path starting at the root node and
ending at the leaf). However, note that since words may themselves be prefixes of other words
(e.g., ‘no’ is a prefix of ‘not’), internal nodes may or may not represent complete words. Thus, each
node in the trie needs to know whether it represents a word or just a prefix.

A diagram of a small trie is shown in Figure 1. Nodes with a thick border are nodes representing
words, while nodes with a thinner border are prefixes only. This trie contains the following seven
words: a, are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this
trie because the path for those strings ends at a prefix-only node. Any path not drawn is assumed
to not exist, so strings such as cat or next are not valid because there is no such path in this trie.
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Implementing the Lexicon as a trie

There are several different data structures you could use to implement a lexicon— a sorted array, a
linked list, a binary search tree, a hashtable, and many others. Each of these offers tradeoffs between
the speed of word and prefix lookup, amount of memory required to store the data structure, the
ease of writing and debugging the code, performance of add/remove, and so on. The implementation
we will use is a special kind of tree called a trie (pronounced "try"), designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through
the trie traces out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one
for each letter of the alphabet).  Whereas searching a binary search tree eliminates half the words
with a left or right turn, a search in a trie follows the child pointer for the next letter, which narrows
the search to just words starting with that letter. For example, from the root, any words that begin
with n can be found by following the pointer to the n child node. From there, following o leads to
just those words that begin with no and so on recursively.  If two words have the same prefix, they
share that initial part of their paths.  This saves space since there are typically many shared prefixes
among words. Each node has a boolean isWord flag which indicates that the path taken from the
root to this node represents a word.  Here's a conceptual picture of a small trie:
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The thick border around a node indicates its isWord flag is true. This trie contains the words: a,
are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie
because the path for those strings ends at a node where isWord is false. Any path not drawn is
assumed to not exist, so strings such as cat or next are not valid because there is no such path in
this trie.

Like other trees, a trie is a recursive data structure.  All of the children of a given trie node are
themselves smaller tries.  You will be making good use of your recursion skills when operating on
the trie!

Managing node children

For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn
above, the root node has three children, one each for the letters A, N, and Z.  One possibility for
storing the children pointers is a statically-sized 26-member array of pointers to nodes, where
array[0] is the child for A, array[1] refers to B, ... and array[25] refers to Z.  When there is no child
for a given letter, (such as from Z to X) the array entry would be NULL. This arrangement makes it
trivial to find the child for a given letter, you simply access the correct element in the array by letter
index.  However, for most nodes within the trie, very few of the 26 pointers are needed, so using a
largely NULL 26-member array is much too expensive. Better alternatives would be a dynamically-
sized array which can grow and shrink as needed, a linked list of children pointers, or leveraging the
standard classes in our toolkit, such as a Vector or Set, to store the children pointers. We leave the
final choice of a space-efficient design up to you, but you should justify the choice you make in
your program comments. Two things you may want to consider: there are at most 26 children, so
even a O(N) operation to find a particular child is no big deal, and operations such as writing the

Figure 1: A sample trie storing 7 words.

A trie is an unusual data structure in that its performance can improve as it becomes more
loaded. Instead of slowing down as its get full, it becomes faster to add words when they can share
common prefix nodes with words already in the trie.
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Like other trees, a trie is a recursive data structure, and all of the children of a given trie node
are themselves smaller tries. You will be making good use of your recursion skills when operating
on the trie!

2.1 Managing Node Children

For each node in the trie, you need to maintain references to the children nodes. For example, in
Figure 1, the root node has three children, one each for the letters A, N, and Z. One possibility for
storing the child references is a fixed-sized array of 26 references, where array[0] is the child for A,
array[1] refers to B, ... and array[25] refers to Z. When there is no child for a given letter, (such as
from Z to X) the array entry would be null. This arrangement makes it trivial to find the child for
a given letter, as you simply access the correct element in the array by letter index.

However, for most nodes within a trie, very few of the 26 references are actually needed, so
using a full 26-member array wastes a lot of space. A better alternative is a dynamic array (e.g.,
an ArrayList) or a linked list, both of which can grow and shrink as needed. While locating the
correct child for a given letter will be more expensive with such a design, since there are at most
26 children per node (and usually far fewer), the added overhead is likely to be minimal.

2.2 Searching for Words and Prefixes

Searching the trie for words and prefixes is a matter of tracing out the path letter by letter. Let’s
consider a few examples on the sample trie shown previously in Figure 1. To determine if the string
new is a word, start at the root node and examine its children to find one pointing to n. Once found,
recurse on matching the remainder string ew. Find e among its children, follow its reference, and
recurse again to match w. Once we arrive at the w node, there are no more letters remaining in the
input, so this is the last node. Since this node is a word node, we know that this path represents
a word contained in the lexicon.

Alternatively, consider searching for ar. The path exists and we can trace our way through all
letters, but the last node is not a word node, indicating that this path is not a word. It is, however,
a prefix of other words in the trie.

Finally, searching for nap follows n away from the root, but finds no child for a leading from
there, so the path for this string does not exist in the trie. Thus, it is neither a word nor a prefix
in this trie.

All paths through the trie eventually lead to a valid word node. Therefore, determining whether
a string is a prefix of at least one word in the trie is simply a matter of verifying that the path for
the prefix exists.

2.3 Adding Words

Adding a new word to the trie is a matter of tracing out its path starting from the root, as if
searching. If any part of the path does not exist, the missing nodes must be added to the trie. In
some situations, adding a new word will necessitate adding a new node for each letter. For example,
adding the word dot to our sample trie will add three new nodes, one for each letter. On the other
hand, adding the word news would only require adding an s child to the end of existing path for
new. Finally, adding the word do after dot has been added doesn’t require any new nodes at all,
but does require changing a prefix-only node to a full word node.
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Figure 2 depicts the sample trie from Figure 1 after these three words (dot, news, and do)
have been added:
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words to a file need to access the words in alphabetical order, so keeping the list of children
pointers sorted by letter will be advantageous.

Searching for words and prefixes

Searching the trie for words and prefixes is a matter of tracing out the path letter by letter. Let's
consider a few examples on the sample trie shown previously. To determine if the string new is a
word, start at the root node and examine its children to find one pointing to n. Once found, recur on
matching the remainder string ew.  Find e among its children, follow its pointer, and recur again to
match w.  Once we arrive at the w node, there are no more letters remaining in the input, so this is the
last node. The isWord field of this node is true, indicating that the path to this node is a word
contained in the lexicon.

Alternatively, search for ar.  The path exists and we can trace our way through all letters, but the
isWord field on the last node is false, which indicates that this path is not a word. (It is, however, a
prefix of other words in the trie). Searching for nap follows n away from the root, but finds no a
child leading from there, so the path for this string does not exist in the trie and it is neither a word
nor a prefix in this trie.

All paths through the trie eventually lead to a valid node (a node where isWord has value true).
Therefore determining whether a string is a prefix of at least one word in the trie is simply a matter
of verifying that the path for the prefix exists.

Adding words

Adding a new word into the trie is a matter of tracing out its path starting from the root, as if
searching. If any part of the path does not exist, the missing nodes must be added to the trie. Lastly,
the isWord flag is turned on for the final node.  In some situations, adding a new word will
necessitate adding a new node for each letter, for example, adding the word dot to our sample trie
will add three new nodes, one for each letter. On the other hand, adding the word news would only
require adding an s child to the end of existing path for new.  Adding the word do after dot has
been added doesn't require any new nodes at all, just turning on the flag on an existing node. Here
is the sample trie after those three words have been added:
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A trie is an unusual data structure in that its performance can improve as it becomes more loaded.
Instead of slowing down as its get full, it becomes faster to add words when they can share
common prefix nodes with words already in the trie.

Removing words

The first step to removing a word is tracing out its path and turning off the isWord flag on the final
node. However, your work is not yet done because you need to remove any part of the word that is

Figure 2: The sample trie after adding dot, news, and do.

2.4 Removing Words

The first step to removing a word is tracing out its path and changing the final node from a word
node to a prefix-only node. While this will ‘remove’ the word from the trie, however, note that all
the prefix nodes leading to the word are still present, and may now be dead ends.

To clean up the trie after removing the word, any nodes along the path that don’t have other
valid children must be deleted from the trie. For example, if you removed the words zen and not

from the trie shown previously, you should end up with the trie shown in Figure 3:
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now a dead end.  All paths in the trie must eventually lead to a word. If the word being removed was
the only valid word along this path, the nodes along that path must be deleted from the trie along
with the word.  For example, if you removed the words zen and not from the trie shown previously,
you should have the result below.
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As a general observation, there should never be a leaf node whose isWord field is false.  If a node
has no children and does not represent a valid word (i.e., isWord is false), then this node is not
part of any path to a valid word in the trie and such nodes should be deleted when removing a word.
In some cases, removing a word from the trie may not require removing any nodes.  For example, if
we were to remove the word new from the above trie, it turns off isWord but all nodes along that
path are still in use for other words.

Important note: when removing a word from the trie, the only nodes that may require deallocation
are nodes on the path to the word that was removed. It would be extremely inefficient if you were to
traverse the whole trie to check for deallocating nodes every time a word was removed, and you
should not use such an inefficient strategy.

Other trie operations

There are few remaining odds and ends to the trie implementation. Creating an iterator and writing
the words to a file both involve a recursive exploration of all paths through the trie to find all of the
contained words.  Remember that in both cases it is only words (not prefixes) that you want to
operate on and that these operations need to access the words in alphabetical order.

Once you have a working lexicon, you're ready to implement the snazzy spelling correction
features. There are two additional Lexicon member functions, one for suggesting simple corrections
and the second for regular expressions matching:

Set<string> *SuggestCorrections(string target, int maxDistance);

Set<string> *MatchRegex(string pattern);

Suggesting corrections

First consider the member function SuggestCorrections. Given a (potentially misspelled) target
string and a maximum distance, this function gathers the set of words from the lexicon that have a
distance to the target string less than or equal to the given maxDistance. We define the distance
between two equal-length strings to be the total number of character positions in which the strings
differ. For example, "place" and "peace" have distance 1, "place" and "plank" have distance 2. The
returned set contains all words in the lexicon that are the same length as the target string and are
within the maximum distance.  

Figure 3: The sample trie after deleting zen and not.

Cleaning up nodes after deletion is an optional extension for extra credit. While
just leaving old nodes in place after word deletion is okay, doing so does waste space and results in
leaf nodes that don’t represent actual words (as well as prefixes that aren’t part of any complete
words in the trie).
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3 Advanced Lexicon Operations

This section details the final two Lexicon operations, suggestCorrections and matchRegex.
These operations are challenging and should not be attempted until the rest of the Lexicon is
working; as such, you may wish to revisit this section after implementing the basic operations.

3.1 Spelling Corrections

Consider the following strategy for suggesting corrections to a (potentially misspelled) word. Define
the distance between two words of equal length as the number of character positions in which the
words differ. For example, the words “place” and “peace” have distance 1, while the words “place”
and “plank” have distance 2. Given a target word and a maximum distance (e.g., 3), we can
suggest all words in the lexicon with distance to the target no greater than the maximum as
possible corrections.

For example, consider the original sample trie containing the words a, are, as, new, no,

not, and zen. If we were to call suggestCorrections with the following target string and maxi-
mum distance, here are the suggested corrections:

Target string Max distance Suggested corrections

ben 1 zen

nat 2 new, not

For a more rigorous test, consider a lexicon containing the full contents of the second edition
of the Official Scrabble Player’s Dictionary (aka OSPD2). Here are a few examples of calling
suggestCorrections on this lexicon:

Target string Max distance Suggested corrections

crw 1 caw, cow, cry

zqwp 2 gawp, yawp

lexicon 2 lexicon, helicon, lexical

Finding appropriate spelling corrections in a trie requires a recursive traversal that gathers
those “neighbors” that are close to the target path. In particular, you should not find suggestions
by examining every word in the lexicon and seeing if it is close enough (you could, but doing so
would be extremely slow). Instead, think about how you can generate candidate suggestions by
traversing the path of the target string and taking small “detours” to the neighbors that are within
the maximum distance.

3.2 Pattern Matching

One of the most powerful ways to locate patterns in text is using a regular expression (or regex),
which is a string that specifies a search pattern (some of you may be having flashbacks to 1101
right now). You will implement a matchRegex method that allows matching simple regexes against
all words in the lexicon.
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The regular expressions your program will support may consist only of regular letters (which
must match the corresponding letter in any matching word) and three different ‘wildcard’ charac-
ters, as specified below:

• The ‘ ’ wildcard character matches any one character.

• The ‘*’ wildcard character matches any sequence of zero or more characters.

• The ‘?’ wildcard character matches either zero or one characters.

For example, consider the original sample trie containing the words a, are, as, new, no,

not, and zen. Here are the matches for some sample regular expressions:

Regular expression Matching words from lexicon

a* a, are, as

a as

a? a, as

*e* are, new, zen

e new, zen

not not

z*abc?*d

*o? no, not

Finding all words that match a regular expression will require applying your finest recursive
skills. You should not find suggestions by examining each word in the lexicon and seeing if it is a
match. Instead, think about how to generate matches by traversing the path of the pattern. For
non-wildcard characters, the search proceeds just as for traversing ordinary words. For wildcard
characters, “fan out” the search to include all possibilities for that wildcard (i.e., this will involve
multiple recursive calls).

4 Class Overview

As in the last lab, some classes will be provided to you, while you will need to write others yourself.
You will be provided with the Lexicon interface (described in Section 1) and one regular class,

the TestLexicon class. The tester class contains a main method that launches a text-based interface
to interact with a Lexicon object. This class will be very useful when developing, debugging, and
testing your trie. Using the tester program should be self-explanatory, and instructions are provided
upon starting the program. You should not modify either the Lexicon interface or the TestLexicon
class.

You are responsible for writing two additional classes: a LexiconTrie class, which is the actual
implementation of the Lexicon interface, and a LexiconNode class, which represents a single node
within the LexiconTrie. This approach is similar to that of our SimpleLinkedList class (more so
than our BinaryTree class, in fact), in that there is a class representing the data structure itself
(LexiconTrie) composed of multiple recursively-defined “node” objects represented by a second
class (LexiconNode).
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Note that the provided TestLexicon class constructs a LexiconTrie object to use (even though
the LexiconTrie class does not initially exist). Thus, the TestLexicon class will not compile until
you have a compiling skeleton of the LexiconTrie class in place.

In addition to the Lexicon interface and TestLexicon class, you will be provided with three
sample data files that can be used in conjunction with the addWordsFromFile method to populate
a trie. Two of the data files are small and better for initial testing, while the third is the complete
Scrabble dictionary mentioned previously (OSPD2). This third data file is quite large and should
probably not be used until you are ready to start stress-testing your program.

5 Implementation Plan

Below is a suggested plan of action for tackling the program.

• Start by implementing the LexiconNode class, which represents a single node in the lexicon
trie. The skeleton of this class is likely to remind you of the GameTree class from Hexapawn.
Make sure that you maintain all the state necessary for one each node of the trie by defin-
ing appropriate instance variables. The most important functionality that you will need to
provide in this class is interacting with the child nodes (e.g., adding, getting, and removing
children). One important note here is that since you will want to be able to traverse the trie
in alphabetical order, it will be very helpful to keep the list of child references in alphabetical
order (i.e., sorted by letter). Rather than resorting the entire list every time you add a child
(which would be very slow), just insert each new child at the appropriate (sorted) position.

As usual, your class should have any needed methods to work with the children – don’t
short-circuit your class by writing a getter that just returns the internal list of children.

Finally, you may wish to have the LexiconNode implement the Iterable iterface and provide
iteration capabilities over its children. Doing so will simplify the implementation of the
LexiconTrie class by allowing you to use for-each style loops over LexiconNode objects.
Implementing the Iterable interface should be very easy – you don’t need to write a brand-
new Iterator class, but can just recycle the iterator provided by the child list by calling its
iterator() method.

• After completing LexiconNode, move on to LexiconTrie. To start, get a skeleton class in
place so that you can run the TestLexicon program. The testing code makes calls to all of
the public methods of the lexicon, but this doesn’t mean that you should write all the code
first and then attempt to debug it all at once (you shouldn’t!). Instead, you can implement
methods with placeholder “stubs” to start (i.e., trivial implementations that compile but just
return dummy values). For example, if your lexicon doesn’t yet remove words, implement a
remove operation that just ignores its argument (or alternately, raises an error). Similarly,
before you have implemented regular expression matching, just return an empty set from the
method, and so on.

In addition to the methods defined by the Lexicon interface, you’ll need to add a constructor.
The constructor should create a single LexiconNode representing the root. Assuming your
LexiconNode objects are associated with characters (as they should be), you can have the
root node be associated with a blank space ‘ ’ (which is still a character just like any other).
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• You should now be able to run TestLexicon to interact with your Lexicon methods. Now
move onto implementing containsWord and containsPrefix. The technique used in both
of these methods is basically the same (so you may want to consider writing a helper method
that both of them use – always watch out for duplicate code blocks!). Note that you can
implement these method either with or without recursion! Whichever way you prefer is fine.

• Now move onto addWord and addWordsFromFile. The latter should use a Scanner to parse
the input file line-by-line, and should call addWord for each one. Remember to convert every-
thing to lowercase before adding it to the trie. This is a good time to implement the numWords
method as well.

At this point, you should be able to run some non-trivial tests using TestLexicon to populate
a trie from a data file, then test the containsWord and containsPrefix methods against
strings in the data file (or not in the data file, as the case may be).

• This is probably a good time to implement the iterator method of the LexiconTrie class.
As with the LexiconNode class, you do not need to write a brand-new iterator, but can just
reuse an existing class’ iterator() method. Things are somewhat trickier here, however,
because you don’t have an existing list that contains everything you want to iterate through.
Instead, you’ll need to populate such a list using a recursive traversal of the trie nodes. Keep
in mind that assuming you followed the earlier advice, the LexiconNodes already maintain a
list of their children in sorted order. That will help you iterate over the trie in alphabetical
order. Remember that it is only words (not prefixes) that you want to operate on.

• The removeWord method may be implemented recursively or iteratively. If you choose to do it
recursively, you may want to use a helper method. Remember that performing node cleanup
(i.e., deleting unneeded nodes) is an optional extension; this method is simpler if you don’t
worry about cleaning up.

If you do want to delete unneeded nodes, as a general observation, there should never be a
leaf node that is a prefix node only. If a node has no children and does not represent a valid
word, then this node is not part of any path to a valid word in the trie, and such nodes should
be deleted when removing a word. In some cases, removing a word from the trie may not
require removing any nodes.

Lastly, note that when removing a word from the trie, the only nodes that may require removal
are nodes on the path to the word that was removed. It would be extremely inefficient to
check additional nodes that are not on the path.

• At this point, the entire Lexicon should be working except for the two advanced operations
suggestCorrections and matchRegex. Put on your recursion hat and try to tackle them (in
either order – they aren’t dependent on each other). You will probably want to use helper
methods for both.

• Once everything is working, try running tests on the Scrabble dictionary (especially using the
advanced operations) – you can do some interesting things with the advanced operations on
a large lexicon!
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6 Implementation Advice

Here are specific tips about various parts of the program.

6.1 Debugging

Test early and often! Make extensive use of the provided tester program to exercise each method as
you write it. Writing a bunch of interconnected classes and methods and trying to test all at once
is a recipe for frustration. Also remember to use simple print-based debugging (i.e., printing key
variables) when something isn’t working but you’re not quite sure where the problem is located.

6.2 Recursion Tips

Many of the methods of the LexiconTrie class may be recursive. However, the only methods
that must be recursive are matchRegex and suggestCorrections. Other methods can be done
recursively (and it may make sense to do so), but you will not be penalized if you choose to
implement them iteratively. Use whichever technique you find most straightforward.

As a general note when writing your recursive methods, use extra parameters when you need
to pass extra data through the recursive calls. For example, if you are writing a recursive method
that is building up a list of values, you can pass the list as a parameter down the stack of recursive
calls. As long as you’re passing the same list through each call and not creating a brand-new list
each time, any modifications to the list that the recursive calls make will “stick” once recursion is
over (since they’ll all be using the same actual list object, even though there are multiple distinct
recursive calls).

You will probably have an easier time debugging your recursive methods if you stick to using
parameters to pass data between recursive calls and avoid using instance variables (e.g., you could
store a list in an instance variable and have your recursive calls modify that instead, but you’re
more likely to accidentally run into problems that way).

Finally, note that while the LexiconNode class is recursive in the sense that a trie node contains
references to other trie nodes (i.e., its children), none of the methods of the LexiconNode class
should be recursive.

6.3 Tree Traversals

Most of the recursion in this lab consists of recursively traversing the trie nodes, which is basically
just a fancy way of saying getting to (or ‘visiting’) each node via a recursive call to that node.
Following this approach, here’s pseudocode for how one could recursively “visit” each node in the
trie (or in any tree):

function visit(node):

print("I’m here!")

for each child of node:

visit(child)

Of course, the above pseudocode doesn’t do anything useful, whereas your recursive traversals
are actually trying to accomplish something (e.g., collecting all the words stored in the trie for the
iterator method of LexiconTrie). Thus, what you actually do when “visiting” each node will be
more than just printing some dummy message as in the above example.
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6.4 Sets

The two “advanced” lexicon operations are defined to return Set objects. A set is an abstract data
type (and also a Java interface, like List or Map) that represents an unordered collection of elements
in which duplicates are not allowed. The fundamental operations of a set are adding/removing an
element and checking whether some element exists within the set. When working with a set, we
often just want to iterate over its elements (which might be returned in some arbitrary order).

The implementation of the Set interface that you should use is the HashSet class. Consult
the Javadoc for constructing and working with a HashSet object.

Note that one place we have seen Sets before (even if we didn’t realize it at the time) is when
we were using Maps – the collection of all keys for a given map (e.g., as returned by the keySet

method) is a Set. This makes sense when we note that a map cannot have duplicate keys, and
the keys exist in no particular order. It is not a coincidence that the standard Map implementation
(i.e., HashMap) is named so similarly to the standard Set implementation (HashSet) – they use the
same underlying technique (hashing), which we will learn about towards the end of the semester.

7 Evaluation

As usual, your completed program will be graded on correctness, design, and style. Make sure that
your program is documented appropriately and is in compliance with the coding and style guide.
Lastly, make sure that your name (and the name of your partner, if applicable) is included in all
of your Java files.

8 Submitting Your Program

Submit your program on Blackboard in the usual way. Remember to create a zip file named with
your username(s) and lab number, e.g., sbowdoin-jbowdoin-lab8.zip, and upload that file. Also
remember to submit your group reports to me by email if working with a partner.
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