Lab 5: The Two Towers!
CSCI 2101 — Fall 2018

Due: Tuesday, October 30, 11:59 pm
Collaboration Policy: Level 1
Group Policy: Individual

In this week’s lab, you will use Iterators to solve a difficult problem. You will also gain expe-
rience measuring the execution speed of programs and an appreciation for the impact of algorithmic
complexity on real-world running times.

Note that the amount of code you will need to write in this week’s lab is less than in past labs,
but the code is harder to wrap your head around. Plan accordingly!

1 The Two Towers

Suppose that you are given n uniquely sized cubic blocks, where each block has a face area (not
side length) of 1 to n. In other words, each block k has a face area of k and a side length of v/k.
Your goal is simple: you want to use all n blocks to build two towers such that the heights of the
towers are as close as possible.

For example, consider the case of n = 15. Below is a possible stacking of the 15 blocks into
two towers, and in this particular stacking (assuming each unit is one-tenth of an inch), the heights
of the towers differ by only 129 millionths of an inch.
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Figure 1: A possible stacking of n = 15 blocks.

You might be surprised to hear that the stacking configuration depicted in Figure 1 is actually
only the second-best solution for the n = 15 case! This week, you will write a program that can find
the best solution to this problem (for any n, with a few caveats) by exhaustively checking every
possible pair of tower configurations.

! Adapted from a lab provided with Java Structures, D. Bailey



2 Program Interface

The basic operation of your program will be quite simple. On startup, the program should prompt
the user for a desired number of blocks (i.e., the value of n):

Enter number of blocks:

Once a number of blocks is entered (you can assume n > 2), the program should solve the two
towers problem by trying every configuration and then printing the following pieces of information:

1. The optimal tower height (i.e., the height of each tower if they were exactly equal in height).

2. In the best possible solution, the subset of blocks making up the shorter tower (the taller
tower would simply be the rest of the blocks).

3. The height of the (shorter) tower represented by the above subset.
4. The difference between the height of the best shorter tower and the optimal tower height.

5. The clock time (i.e., actual real-world time) taken to solve the problem, in milliseconds. Note
that this duration may vary from run to run or machine to machine.

Below is example output for n = 10:

Enter number of blocks: 10

Target (optimal) height: 11.23413909310205
Best subset: 1 4 5 8 10

Best height: 11.22677276241436

Distance from optimal: 0.0073663306876898815
Solve duration: 3 ms

3 Problem Analysis

To start, we can easily determine the total height of all the blocks by just summing their individual
heights, i.e., the total height h is:
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Thus, if we were able to produce two towers of exactly equal height, the height of each tower
would be h/2. Now consider the best possible two tower configuration. The shorter tower of
this configuration would have a tower height as close to h/2 as possible (ideally equalling it), but
without exceeding it. Given a particular subset of blocks, it is easy to calculate the height of the
corresponding tower, so we can solve the problem optimally by enumerating every possible subset
of the n blocks (to find the subset with height closest to but no greater than h/2). In other words,
our challenge is to find a way to enumerate every possible subset of blocks.

In more concrete terms, imagine that we have a list of n values. In the context of the two
towers problem, each value corresponds to a particular block, but this analysis would equally apply



to any list (storing arbitrary values). The elements of the list are accessed by indices from 0 to n—1.
If we can generate a subset of indices, then the elements at those indices gives us an actual subset
of list elements (blocks or anything else). Thus, what we really need is a way to systematically
generate all possible subsets of the n list indices. To think about how we can represent a subset of
the n indices, we're going to use a few tricks based on the way computers represent numbers.

3.1 Binary Numbers

All computers represent information in binary (i.e., base 2) instead of the base 10 numbering
system that humans generally use. A binary number is comprised of only 0’s and 1’s, and is
built using powers of 2 instead of powers of 10. For example, the binary number 1101 is equal to
15234122 4+0%2"' +1%2° =13 in base 10. Each 0 or 1 in a binary number is referred to as a
bit. Although we normally don’t worry about the fact that computers use binary, all information
is internally represented as a series of bits.

We can represent a subset of n list indices using an n-bit binary number, in which each bit
represents the presence (1 bit) or absence (0 bit) of the corresponding index. Bit 0 would be the
right-most bit, while bit n — 1 would be the left-most bit. For example, the 4-bit binary number
1101 (which is 13 in base 10) would represent the index subset [0, 2, 3] (all indices included except
bit 1). Similarly, the binary number 0101 (5 in base 10) would represent the index subset [0, 2].
Note that if we considered every 4-bit binary number starting with 0000 (the subset containing
nothing) and ending with 1111 (the subset containing all four indices), we would have considered
every possible subset along the way. Traversing subsets represented in this way is easy, since we're
just counting from 0 (binary 0000) to 15 (binary 1111). Note that for an n-bit binary number, the
smallest value is 0 (all bits are 0) and the largest value is 2" — 1 (all bits are 1).

Of course, if we want to represent subsets of n indices in this way, then we need to have
numbers that are represented using at least n bits (since computers can only use a finite number
of bits to represent a number). In Java, an int is represented using 32 bits, and a long (the larger
integer type) is represented using 64 bits. For maximum flexibility, we can choose to represent the
subset using a long, and should thus be able to consider the subset problem up to n = 64.

3.2 Binary Operations

Following the above, you will represent an index subset using a long (a single number), but will
need to extract the actual indices included in the subset by working with the binary representation
of the number. Doing so will require a few operators we haven’t seen before. We needn’t worry
about exactly how these operators work, but there are two specific tricks we’ll need:

e The arithmetic shift operator << can be used to quickly compute powers of 2. In particular,
the value 2* can be computed by shifting one ¢ places to the left. For example, the expression
1L << 7 computes the value 27 (the L just indicates that the 1 is a long rather than an int).

e The bitwise and operator & can be used to determine the value of a single bit in a number’s
binary representation. In particular, if m is some long, we can check bit ¢ of m by computing
the expression m & (1L << i). This expression will have a value of 0 if bit ¢ was 0, or
some nonzero value (specifically, some power of 2) if bit ¢ was 1. Note that the operator &
is completely different from the logical and operator && that you’re used to for combining
boolean expressions (don’t mix them up!).



4 Program Design

Armed with our understanding of how to work with index subsets represented using single numbers,
we can go about writing a program to solve the two towers problem.

4.1 Subset Iterator

First we need to build an Iterator that iterates through all element subsets of a given list. For
example, if we're iterating over subsets of the list [a, b, ¢], then the iterator should go about giving
us all eight possible subsets (in no particular order): [], [a], [b], [c], [a, ], [a, c], [b, ], [a, b, c].

Name your new class SubsetIterator. For maximum generality, the list that you're producing
subsets from could store any type of object, so let’s call that generic type T. In other words, each
element (i.e., subset) that the iterator produces will be of type List<T> (a list containing all
elements within that subset). Thus, the generic type of the Iterator interface will be List<T>.

Putting this all together, the declaration of your iterator will be the following:

public class SubsetIterator<T> implements Iterator<List<T>>

The constructor of the class should be given the list of elements that you are going to iterate
over (i.e., generate subsets from). In order to implement the Iterator interface, you will then need
to write the two core methods: hasNext, which says whether there are any remaining elements
(subsets) to iterate over, and next, which actually produces and returns the next subset.

Internally, your iterator will need to keep track of the current subset using a long as detailed
in Section 3. This value will increase from 0 (representing the first subset, containing nothing) all
the way to 2" — 1 (representing the last subset, containing everything) as the iterator progresses.

Note that the Iterator interface also defines a third method remove (which removes the last
element iterated over from the underlying collection), but this is an optional operation and there’s
no need for it here.

Once your iterator is implemented, test it by writing a main method in SubsetIterator with
some test code. For example, you could create an ArrayList of characters and put the characters
‘a’ through ‘e’ in it. Then, create a SubsetIterator for this list and use it to print out all possible
subsets of the list. If your iterator works correctly, it should produce the 2° = 32 different subsets
of the 5 characters in the list.

4.2 Two Towers with Iterators

At this point, you should have a functioning SubsetIterator class. Now you can use this class to
solve the two towers problem. Create a new class named TwoTowers, which will just be a container
for your (final) main method. This method should actually run the program as detailed in Section 2.
To solve the two towers problem, create a list holding the heights of the n blocks (i.e., the values
V1,v2,V3, ...) and use a SubsetIterator to iterate through the subsets of this list. For each
subset, you just need to sum the values to find the height of the corresponding tower, and then
pick the tallest tower (i.e., across all subsets) that’s no taller than h/2. The subset corresponding
to this tower is the best (shorter) tower for the given n. Once you have found the best subset, you
can print out all the information specified in Section 2.



5 Implementation Tips

Here are some implementation pointers as you write your program.

5.1 Program Decomposition

Programming is all about breaking hard problems down into simpler pieces, solving those pieces
on their own, then putting things back together. When you’re writing the SubsetIterator class,
keep that idea in mind — all you're doing is writing an iterator to produce subsets of a list, nothing
more. In particular, nothing in the SubsetIterator class should have anything to do with the two
towers problem specifically. Approach your code accordingly — you’re solving the subset iteration
problem first, and only afterwards actually considering the two towers problem.

Remember that you’ll need to import java.util.Iterator within SubsetIterator in order
to use the Iterator interface.

5.2 Binary Numbers

Beginners often get confused by thinking about binary numbers and think that there’s something
different about storing a number “in binary”. There isn’t — remember that every number in a
computer program is stored in binary, regardless of how you specified the number in your program.
For example, if [ wrote int i = 60, even though I specified the value in decimal, the computer is
still storing the value 60 in binary (which is 111100). The only significance of binary here is that
we are using the binary representation to represent a subset (as described in Section 3) and can
work with the individual bits of the number as detailed there.

5.3 Timing Code

Whenever you want to measure how much actual time is taken to run some code (i.e., wall clock
time), you should write code to measure it — manually controlling a stopwatch or similar is cum-
bersome and much less precise than having the computer do your timing for you.

Measuring the time taken to execute code in Java is very simple — we just record the time
before starting to run the relevant code, record the time after running the relevant code, then
subtract the times to obtain the duration. The standard method to record the current time is
System.currentTimeMillis (), which returns the current time represented as a long:

long startTime = System.currentTimeMillis();

doSomething(); // do something that we want to time

long duration = System.currentTimeMillis() - startTime;
System.out.println("Time to execute doSomething: " + duration + " ms");

If you’re curious, the way the current time is represented as a long is that it’s just the number of
milliseconds that have passed since midnight on January 1, 1970. That particular date is completely
arbitrary, but since everyone agrees on it as “time zero”, we can use a single number like the one
returned by System.currentTimeMillis as a specific timestamp. This approach is how most
computers store dates and times.



5.4 Math Functions

There are a couple of useful math methods that you may wish to use in your program:

e You can use the Math.sqrt method to compute square roots. Note that Math.sqrt returns
a double, which is the type you should use whenever you need to represent fractional values.

e You can use Math.round to round a double to the nearest int (for instance, if converting a
side length like /5 back to its respective block number).

e There is a Math.pow method that can be used to compute powers, but you don’t need to use
it here. You should be able to use the shifting trick described in Section 3 whenever you need
to raise a number to a power (which is also much faster than calling Math.pow).

6 Thought Questions

Once you have completed your program, use it to answer the following questions. Write your
answers in the program README file.

1. What is the best solution to the 15-block problem?

2. Solve the 20-block, 21-block, and 22-block problems and record the time taken to solve each
problem. You might want to run each test two or three times and average the results to get
better measurements. What do you notice about the runtimes? Why does this result make
sense given the design of the program?

3. Based on your empirical results from the previous question and your understanding of the
time complexity, estimate how long it would take to solve the 50-block problem (you won’t
want to actually run this). Give your answer in some reasonable time unit (which shouldn’t
be milliseconds for this question).

7 Evaluation

As usual, your completed program will be graded on correctness, design, and style, as well as your
thought question answers included in your README. Make sure that your program is documented
appropriately and is in compliance with the coding and style guide. Lastly, make sure that your
name is included in both your Java files as well as your README.

8 Submitting Your Program

Submit your program on Blackboard in the usual way. Remember to create a zip file named with
your username and lab number, e.g., sbowdoin-1ab5.zip, and upload that file.



