
Lab 4: Super Sudoku Solver
CSCI 2101 – Fall 2018

Due: Tuesday, October 23, 11:59 pm
Collaboration Policy: Level 1
Group Policy: Pair-Optional

In this week’s lab, you will write a program that can solve any instance of the popular number-
placement puzzle Sudoku. Doing so will give you experience working with linear structures (stacks
in particular), and show you how such structures can be applied to solve an interesting problem.
You will also gain experience working with two-dimensional arrays in Java.

1 Sudoku

Sudoku is a puzzle that existed in some form since the 19th century, but has been popularized
worldwide (starting in Japan) in the last few decades. A Sudoku puzzle consists of a 9x9 grid of
cells, further subdivided into nine smaller 3x3 grids (or “boxes”). In the starting configuration of
the puzzle, a subset of the cells are filled with numbers from 1 to 9, while the rest are left blank.

The objective of the puzzle is to fill in every blank cell with a number from 1 to 9 such that
every digit from 1 to 9 is present in every row, every column, and every 3x3 box. Another way
of thinking of this is that there are no repeated digits in any single row, column, or 3x3 box. An
example of a Sudoku puzzle is shown below, along with its solution.

Figure 1: An example Sudoku puzzle (left) and its solution (right).

Sudoku’s increasing popularity has resulted in many competitions between human players,
who typically vie to complete series of multiple puzzles in the least total time. However, unlike
many competitive games played by humans, Sudoku is a puzzle that can be solved fairly easily by
a computer. In this lab, you will demonstrate this fact by writing a program that can solve any
Sudoku puzzle nearly instantly. A natural way to approach this problem is using a type of linear
structure known as a stack, which we discussed in class.

1



2 Solving Sudoku: Backtracking

The basic design of an automated Sudoku solver is fairly simple. We’re essentially going to solve
the puzzle by considering one empty cell at a time and filling in any valid digit for that cell that
doesn’t violate any of the constraints of the final puzzle (i.e., duplicating a digit in the row, column,
or box). We then proceed to the next empty cell and do the same thing.

If we’re able to choose a valid digit for every empty cell of the puzzle without violating any
constraints, then we’ve solved the puzzle and are done. Of course, it’s unlikely that we just happened
to pick every digit correctly on the first try. If we happen to make a choice that is not the correct
digit for that cell, the result will be that we’ll eventually (possibly multiple choices later) encounter
an empty cell where we can’t place any digit without violating one of the puzzle constraints.

Once we encounter such an situation (i.e., placement is impossible), we know that at least one
previous digit placement was wrong. To recover, we’re going to backtrack – that is, we’re going to
walk backwards through the previously empty cells we filled in, undoing moves that we previously
made (i.e., returning cells to empty). We continue backtracking until we reach a move where we
can instead place a different (but still valid) digit into that cell. We then proceed forward filling in
empty cells as usual, until the next time we cannot make a placement and have to backtrack again.

Here’s a simple example: suppose we’re considering a particular empty cell c1, which can be
filled with either 4 or 7 given the current puzzle configuration. We pick 4 (arbitrarily), then move
onto the next empty cell c2. This cell can only be filled with 1, so we fill with the value 1, then
move to empty cell c3. We then find that there is no possible valid digit for c3, so we’re forced
to backtrack to c2. However, c2 has no valid digit other than the one we previously picked, so we
undo that move (clearing c2) and backtrack again to c1. Now considering c1 again, we know that
picking 4 was a bad move, so we pick 7 instead, and then proceed forward again onto c2.

One challenge you need to deal with is the possibility of trying digits already attempted
previously (e.g., maybe you already tried 4 and 9 for a given cell but haven’t tried 2 yet – just
trying 4 or 9 again isn’t going to get you anywhere). The simplest way to approach this problem is
to try digits starting with the smallest – e.g., if 2, 5, or 7 all work for empty cell c, initially choose
2. The first time you backtrack to c, choose 5 (i.e., a value larger than the one previously chosen).
The next time you backtrack to c, choose 7. If you have to backtrack to c again, then you’re out
of new values to try, and therefore need to backtrack another step.

Note that backtracking is essentially a brute-force algorithm – we’re effectively just trying
different digit placements repeatedly (potentially every possible placement) until we find one that
works. Since a regular Sudoku puzzle is fairly small, this algorithm works just fine on a typical
modern computer. However, for larger grid sizes, backtracking would quickly become intractably
slow. For larger puzzles, other Sudoku solving algorithms exist that are significantly faster (albeit
more complex) than backtracking.

3 Program Overview

Implementing your Sudoku solver will involve a few distinct parts:

• Writing a class to represent a Sudoku puzzle (either an unsolved or solved puzzle).

• Writing a class to solve a Sudoku puzzle using backtracking.

• Writing test code to read a puzzle, solve it, and optionally verify it against a known solution.

2



You will be provided with a few sample Sudoku puzzles as well as their solutions in order to test
your program. The operation of your final program will be quite simple. The program should first
prompt the user to enter a file containing an unsolved Sudoku puzzle, as well as a file containing
the solution to that puzzle (the latter may be omitted by just hitting enter). The program should
then print out the unsolved puzzle, solve it, and print out the solved puzzle. If a solution file was
entered, the program should finally verify that the found solution is correct by comparing it to the
known-correct solution and printing out a message indicating whether verification succeeded. Here
is an example where no puzzle solution is entered:

Enter filename of puzzle: puzzles/s2.txt

Enter filename of solution (optional):

Starting puzzle:

5 _ _ _ _ 9 7 6 _

_ _ 4 _ 8 _ _ 1 _

_ _ 2 6 _ _ _ 9 _

_ _ _ _ _ 8 _ _ _

6 _ 9 2 _ 5 4 _ 3

_ _ _ 4 _ _ _ _ _

_ 1 _ _ _ 2 6 _ _

_ 9 _ _ 4 _ 5 _ _

_ 5 6 8 _ _ _ _ 9

Solved puzzle:

5 3 8 1 2 9 7 6 4

9 6 4 5 8 7 3 1 2

1 7 2 6 3 4 8 9 5

3 4 5 7 9 8 1 2 6

6 8 9 2 1 5 4 7 3

7 2 1 4 6 3 9 5 8

8 1 3 9 5 2 6 4 7

2 9 7 3 4 6 5 8 1

4 5 6 8 7 1 2 3 9

And here is an example where a solution file is entered:

Enter filename of puzzle: puzzles/s2.txt

Enter filename of solution (optional): puzzles/s2-solution.txt

Starting puzzle:

[same as above]

Solved puzzle:

[same as above]

Solution is correct!

3



Note that the final verification might fail due to a bug in the solver code, a bug in the verification
code, or if the solution file entered didn’t actually contain a solution to the given puzzle. In such
cases, a failure message should be displayed instead, e.g., “Solution is NOT correct!”. Your
program can assume that input files are well-formed and that all given puzzles are solvable.

4 Class Overview

Your program will consist of four classes:

1. SudokuPuzzle – a particular configuration of a Sudoku puzzle (either a starting configuration,
a solved puzzle, or an intermediate configuration).

2. SudokuSolver – an object that can solve a given SudokuPuzzle.

3. SudokuMove – an object representing a single digit placement while solving a Sudoku puzzle
(e.g., the placement of the digit 8 in row 3, column 5 of the grid), to be used by the solver.

4. SudokuTest – a container for your main method that reads in the solution and/or puzzle file,
uses a solver to solve the puzzle, and produces the program output.

5 Implementation Plan

As usual, you should build your program incrementally. A suggested plan of attack is given below.

• First, implement the skeleton of the SudokuPuzzle class. You should first write the construc-
tor, which should be given the name of a puzzle file, and should read the file to initialize the
cell contents. Refer to the implementation tips section for advice on storing the puzzle data.

• Next, implement the toString method of SudokuPuzzle so you can print out puzzle objects.
To test puzzle reading and printing, write a short main method in SudokuTest. For now, you
can just hardcode a test puzzle filename and use that to construct a SudokuPuzzle object,
then print it out. At this point, you should be able to produce a Sudoku puzzle like the
starting puzzle shown in the example above.

• Ultimately you’ll need to compare your solved puzzle to a known solution to verify that it’s
correct. In other words, what you’ll need to do is to test whether two SudokuPuzzle objects
are equivalent (one read from the initial puzzle file and then solved by your solver, and the
other read directly from the solution file). The proper idiomatic way to test whether objects
are equivalent is to define an equals method. Refer to the implementation tips section for
more on the equals method. Once you have a functioning equals method, your main method
(in SudokuTest) should be able to create two SudokuPuzzle objects (e.g., from the same file,
or from two different files) and then compare them using equals. Two puzzle objects should
be considered equal if they have the same cell contents.

• Plan out other methods that you will need in SudokuPuzzle – i.e., what are the capabilities
that your puzzle will need to provide while solving it? As a simple example, you will want a
method to check whether a particular move is valid in the current grid configuration. While

4



you do not need to implement every method of SudokuPuzzle now, you will be well served
by spending a bit of time thinking about the methods you will need (remember that you can
always write the method definitions now but defer their actual implementations until later).

Resist any temptation to write a getter method that just returns the internal grid instance
variable. Your SudokuPuzzle class should provide any public methods needed to interact
with the puzzle grid, and therefore should not expose the grid instance variable to arbitrary
modification by just returning it.

• Begin implementing the SudokuSolver class. The constructor for this class should just take
the SudokuPuzzle that you want to solve and store it. The class should have only a single
public method (e.g., solve) that actually runs the backtracking algorithm to solve the puzzle.
However, you may want other private helper methods to assist with the solving method, such
as a method that determines the next move that should be made.

A good way to implement the initial solver is to ignore the possibility of backtracking – i.e.,
just assume that every time you consider an empty cell, you will be able to find a digit that
satisfies it. The first puzzle example (s1.txt) can be solved without backtracking, so you
can first get a non-backtracking solver working, then implement backtracking afterwards.

As your SudokuSolver is essentially choosing a series of moves to make, at this point you
should also implement the SudokuMove class. The SudokuMove class should be quite simple,
and just represents one particular move (i.e., a particular digit placed at a particular row and
column of the grid). Whenever your SudokuSolver determines the next move to make, it
should create a SudokuMove object representing the move (which you can then return from
the helper method that picks the next move).

As you write the SudokuSolver class, you will need to use the public methods of the
SudokuPuzzle class, so depending on what you wrote previously, you may need to define
additional methods in that class (or you may just need to implement methods that you
defined earlier but didn’t implement).

• At this point, you should have a functioning (but non-backtracking) SudokuSolver class,
as well as your complete SudokuMove class (used by the solver) and a mostly-complete
SudokuPuzzle class. Now, change the main method in SudokuTest to actually solve the
puzzle you read in, then re-print the puzzle after solving. Assuming the solver works, you
should be able to produce the s1-solution.txt puzzle solution. You can verify your solved
puzzle against the known solution using the equals method that you wrote earlier.

• Returning to your SudokuSolver class, now you should actually implement backtracking.
Without backtracking, you didn’t need to worry about storing moves as you made them,
since you never needed to undo previous moves. Now, every mode you make must be saved,
since you might have to backtrack and undo them later.

Note that backtracking is needed when you’re unable to find a valid move for some empty cell.
If you have a helper method that determines the next move to make as suggested previously,
a good way to flag that no move is possible is to return null from that method, which signals
to the solve method that backtracking is needed.

A stack is perfectly suited to backtracking, since all you’re doing is either adding the most
recent moves (i.e., pushing moves) or removing moves starting from the most recent (i.e.,

5



popping moves). In other words, your access pattern is exactly Last-In-First-Out (LIFO),
which is precisely what a stack provides. See the implementation tips for more information
on actually choosing a data structure to store your moves (remember that a stack is just an
Abstract Data Type, not a data structure itself).

• Once your backtracking solver is working, you should be able to solve the s2.txt puzzle (or
any other Sudoku puzzle). The only task remaining (if you didn’t do it earlier) is providing the
appropriate interface in SudokuTest to ask for the two filenames and print out the appropriate
output. Remember that providing the solution file should be optional – you can also test on
the s3.txt puzzle, for which no solution file is provided.

6 Implementation Tips

Below are specific implementation tips on various parts of the program.

6.1 Storing the puzzle grid

Your SudokuPuzzle class needs to store the puzzle grid in some way. While you could potentially
use a regular array (or list) with 81 spaces to store every digit, it’s much easier to think of the
puzzle cells in terms of row and column numbers (e.g., the upper-left cell is row 0, column 0, and
the lower-left cell is row 8, column 0). The best way to do this is using a two-dimensional array –
or, equivalently, an array that stores other arrays.

Here’s an example of creating a 2D array of integers:

int[][] nums = new int[numRows][numCols];

Accessing single elements is the same as with a regular (1-dimensional) array, except that both
row and column numbers have to be specified:

int val = nums[0][5]; // get row 0, column 5

nums[3][2] = 8; // assign row 3, column 2

Note the particular types involved in a 2D array such as this. The base array nums is of type
int[][] (i.e., a 2-dimensional array of ints). A specific row in the 2D array, such as nums[3], is
of type int[] (i.e., a 1-dimensional array of ints). A specific element in a specific row, such as
nums[3][5], is of type int (just a single number).

Many methods working with a 2D array such as your grid will need to loop over the grid
elements, which is best done using a nested loop (one loop for rows, one loop for columns).

Note that you can also create arrays with an arbitrary number of dimensions (not just two),
though there’s no need to do so here.

6.2 Reading puzzle files

Puzzle files simply consist of a sequence of 81 digits separated by spaces and/or newlines. Blank
spaces in the puzzles are indicated by zeroes, which is an approach you may wish to reuse in your
program. Solution files are formatted in exactly the same way (except they won’t contain any
zeroes, since they’re fully filled in).

6



Reading the puzzle files is simple using the nextInt method of the Scanner class, which will
simply grab the next digit (skipping over spaces or newlines that come before it). Thus, reading a
puzzle file just requires repeatedly calling nextInt (but write a loop for this!).

Refer to the handout for Lab 3 if you need a refresher on how to use a Scanner to read from
a file (but you don’t need to go line by line here – you just need nextInt).

6.3 Writing an equals method

You will need to write an equals method in SudokuPuzzle to allow you to check whether two
puzzles match (e.g., your solved puzzle and a known solution to the puzzle). Remember that
equals is another method like toString that is defined in the Object class and then overridden in
a subclass (SudokuPuzzle in this case). Since you are overriding an existing method, the method
declaration needs to exactly match that in the parent, which is as follows:

// check whether obj is equivalent to this object

public boolean equals(Object obj)

In particular, note that the equals method allows comparing again any other object, not just
another object of the same type. Usually, we don’t consider two objects equivalent if they aren’t
the same type (e.g., a String is never equivalent to a SudokuPuzzle), so the first thing the equals

method normally does is test the type of the obj parameter. To do so, you can use the instanceof

operator to check whether an object is of a given type:

if (obj instanceof T) {

// obj is of type T

} else {

// obj is not of type T

}

If the object is of the correct type, then we usually need to check some parts of their state
(e.g., a SudokuPuzzle might or might not be equivalent to another SudokuPuzzle). Remember
that you can cast an object to a desired type, which then allows you to access its methods and
instance variables. Though casting is normally dangerous, doing so after first checking an object’s
type using instanceof is safe (since you won’t cast anything that’s not of that particular type).

Refer to the Point example we looked at in class (and posted online), which has an example
of implementing an equals method that follows the typical template.

Lastly, remember that if you want to compare two arrays, you shouldn’t use ==, which will
check if they’re the same object, not if they simply have equivalent values. To check if two arrays
have the same values, you need to loop over their values to verify each one.

6.4 Checking Sudoku boxes

One of the trickier parts of the SudokuPuzzle class is the method that checks whether a particular
digit placement is allowed. Checking the relevant row or column to make sure that there are no
duplicate digits is simple, but it’s harder to check the 3x3 box that the grid position is part of.

A good way to approach this problem is to calculate a row index and column index of the
relevant 3x3 box – e.g., the top-right 3x3 box is box row 0, box column 2, and the middle 3x3 box

7



is box row 1, box column 1. Given a particular box row and box column, you can then check that
particular 3x3 box to see if the desired digit already appears somewhere in the box.

Calculating the box row and box column from a regular row/column cell position is easy –
just divide by 3, since integer division in Java throws away any remainder. For example, the cell
position (1, 8) is part of box row 1/3 = 0 and box column 8/3 = 2 (the top-right box).

6.5 Stack Classes

You will need an actual stack implementation to use when storing moves for backtracking. While
Java does have a class named Stack, this is a legacy class that exists for compatibility reasons and
should not be used in any new code.

Instead, you should use one of the Java classes implementing the Deque interface (pronounced
“deck”), which is short for “double-ended queue” and represents a linear collection that supports
object access at either end (either the start or end of the collection). A deque is more general
than a stack (since a stack only needs access from one end) but anything that a stack can do, a
deque can equivalently do. Note that a Deque is different from a List in that a List supports
object access via specific positions/indices, whereas a Deque only supports access from the ends
(and should achieve O(1) access from either end, which a List may not).

The only Deque methods you should need to use are push and pop. These methods are
equivalent to addFirst and removeFirst, respectively, but it’s a good idea to get used to stack
terminology, so you should use push and pop instead.

Since Deque is just an interface (like List), you will need an actual data structure (im-
plementing Deque) to use in your program. The two most appropriate options are LinkedList

and ArrayDeque. Note that the LinkedList class is both a List as well as a Deque, while the
ArrayDeque class is a Deque but not a List (similarly, the ArrayList class is a List but not
a Deque). A LinkedList is implemented in the usual node-based way, while an ArrayDeque is
implemented similarly to the array-based queue we discussed in class. Note that while the asymp-
totic (Big-O) performance of LinkedList and ArrayDeque is equivalent for almost all operations,
ArrayDeque is empirically faster in most real-world scenarios.

Remember to import the appropriate classes in your program – the Deque, LinkedList, and
ArrayDeque classes are all part of java.util.

7 Evaluation

As usual, your completed program will be graded on correctness, design, and style. Note that your
solver will be tested on more puzzles than just the three provided to you. Make sure that your
program is documented appropriately and is in compliance with the coding and style guide. Lastly,
make sure that your name (and the name of your partner, if applicable) is included in all of your
Java files.

8 Submitting Your Program

Submit your program on Blackboard in the usual way. Remember to create a zip file named with
your username(s) and lab number, e.g., sbowdoin-jbowdoin-lab4.zip, and upload that file. Also
remember to submit your group reports to me by email if working with a partner.

8


